program_translator.py 67.8 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import collections
16
import inspect
17
import os
18 19
import textwrap
import threading
20
import warnings
21
import weakref
22

23
from paddle.fluid import core, framework
24
from paddle.fluid.data_feeder import check_type
25 26 27 28 29
from paddle.fluid.dygraph.base import (
    _switch_declarative_mode_guard_,
    param_guard,
    switch_to_static_graph,
)
30
from paddle.framework import in_dynamic_mode
31
from paddle.nn.layer import layers
32
from paddle.utils import flatten, gast
33 34 35 36 37 38 39 40 41

from . import error, logging_utils
from .ast_transformer import DygraphToStaticAst
from .function_spec import (
    FunctionSpec,
    _hash_spec_names,
    get_buffers,
    get_parameters,
)
42
from .origin_info import (
43 44 45 46
    attach_origin_info,
    create_and_update_origin_info_map,
    update_op_callstack_with_origin_info,
)
X
xiongkun 已提交
47
from .partial_program import PartialProgramLayerHook, partial_program_from
48
from .utils import (
49
    ALREADY_D2S,
50
    NO_SHAPE_VAR_TYPE,
51 52
    ast_to_func,
    ast_to_source_code,
53
    backend_guard,
54 55
    func_to_source_code,
    input_specs_compatible,
56
    is_paddle_func,
57
    make_hashable,
58
    prim_or_cinn_is_enabled,
59 60
    type_name,
    unwrap,
61
)
62

63
__all__ = []
64

65 66 67 68
# For each traced function, we set `max_traced_program_count` = 10 to consider caching performance.
# Once exceeding the threshold, we will raise warning to users to make sure the conversion is as expected.
MAX_TRACED_PROGRAM_COUNT = 10

69 70
CONVERSION_OPTIONS = "__jst_not_to_static"

71

72 73 74 75 76 77 78 79 80 81
def synchronized(func):
    func.__lock__ = threading.Lock()

    def lock_func(*args, **kwargs):
        with func.__lock__:
            return func(*args, **kwargs)

    return lock_func


82
class FunctionCache:
83 84 85 86 87
    """
    Caches the transformed functions to avoid redundant conversions of the same function.
    """

    def __init__(self):
88
        # Caches the converted static functions. {dygraph_func: static_func}
X
xiongkun 已提交
89
        self._converted_static_func_caches = weakref.WeakKeyDictionary()
90
        # Caches the converted ast node for same source code. {source_code: ast_root}
91
        self._code_to_ast_caches = {}
92
        self._dygraph_to_static = DygraphToStaticAst()
93

94 95 96 97 98 99
    def convert_with_cache(self, func):
        """
        Returns the cached static function or converts it when first encounters the function.
        """
        # If hit cache, return it directly.
        static_func = self._converted_static_func_caches.get(func, None)
100 101

        if static_func is None:
102 103
            static_func = self._convert(func)
            self._converted_static_func_caches[func] = static_func
104 105 106

        return static_func

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def _convert(self, func):
        """
        Converts dygraph function into static function. For two functions with same dedent code,
        the second function will reuse the transformed ast node of previous one.

        For example:
            # A.py
            def foo(x, y):
                z = x + y
                return z

            # B.py
            def foo(x, y):
                z = x + y
                return z

        If the conversion of A.foo happens after B.foo, it will reuse the transformed ast node of B.foo
        to speed up the conversion.
        """
        # Note: In Python2, it will raise OSError when inspect function
        # with decorator directly and function.__wrapped__ holds the actual function.
128
        func = unwrap(func)
129
        source_code = func_to_source_code(func)
130 131 132 133 134

        # TODO(liym27):
        #  Consider this case: source_code in self._code_to_ast_caches,
        #  but actually they are methods in different classes.
        #  Maybe use (__class__, source_code) as key
135
        if source_code in self._code_to_ast_caches:
136
            root = self._code_to_ast_caches[source_code]
137 138
        else:
            root = gast.parse(source_code)
139
            root = attach_origin_info(root, func)
140 141
            root = self._dygraph_to_static.get_static_ast(root)
            self._code_to_ast_caches[source_code] = root
142

143
        # Get static function from AST
144
        static_func, file_name = ast_to_func(root, func)
145

146
        create_and_update_origin_info_map(root, static_func)
147
        return static_func
148 149

    def exist(self, func):
150
        return func in self._converted_static_func_caches
151 152


153 154 155 156
_CACHE_LOCK = threading.Lock()
_FUNCTION_CACHE = FunctionCache()


157
def convert_to_static(function):
158
    """
159
    Transforms function of dygraph into static function using the cache mechanism.
160

161 162
    Note(dev): It will return function.__func__ if encountering class method.

163 164
    Args:
        function(callable): The function with dygraph layers that will be converted into static layers.
165
    """
166 167
    if getattr(function, ALREADY_D2S, None):
        return function
168 169 170

    # Return directly if decorated with @not_to_static and DO NOT Cache it
    options = getattr(function, CONVERSION_OPTIONS, None)
171 172 173 174 175
    # or ignore paddle api
    need_skip = (options is not None and options.not_convert) or is_paddle_func(
        function
    )
    if need_skip:
176 177
        return function.__func__ if inspect.ismethod(function) else function

178
    with _CACHE_LOCK:
179
        static_func = _FUNCTION_CACHE.convert_with_cache(function)
180
        setattr(static_func, ALREADY_D2S, True)
181 182 183
        return static_func


184
class CacheKey:
185 186 187
    """
    Cached key for ProgramCache.
    """
188

189
    __slots__ = [
190 191 192 193 194 195
        'function_spec',
        'input_args_with_spec',
        'input_kwargs_with_spec',
        'class_instance',
        'kwargs',
        '_spec_names_id',
196
        '_new_ir_flags',
197
    ]
198

199 200 201 202 203 204
    def __init__(
        self,
        function_spec,
        input_args_with_spec,
        input_kwargs_with_spec,
        class_instance,
205
        **kwargs,
206
    ):
207 208
        """
        Initializes a cache key.
209

210 211
        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
212 213
            input_args_with_spec(list[InputSpec]): actual input args with some arguments replaced by InputSpec.
            input_kwargs_with_spec(list[{string:InputSpec}]): actual input kwargs with some arguments replaced by InputSpec.
214
            class_instance(object): a instance of class `Layer`.
215
            **kwargs(dict): manage other arguments used for better scalability
216
        """
217
        self.function_spec = function_spec
218 219
        self.input_args_with_spec = input_args_with_spec
        self.input_kwargs_with_spec = input_kwargs_with_spec
220
        self.class_instance = class_instance
221 222
        # NOTE: `kwargs` is usually not considered as basic member for `__hash__`
        self.kwargs = kwargs
223 224 225
        self._spec_names_id = _hash_spec_names(
            input_args_with_spec, input_kwargs_with_spec
        )
226 227 228
        self._new_ir_flags = os.environ.get(
            'FLAGS_enable_new_ir_in_executor', None
        )
229 230 231

    @classmethod
    def from_func_and_args(cls, function_spec, args, kwargs, class_instance):
232
        """
233 234 235 236 237 238 239 240 241 242 243
        Generated a CacheKey instance by given inputs.

        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
            args(tuple): tuple of actual inputs arguments.
            kwargs(dict): dict of actual inputs keyword arguments.
            class_instance(object): a instance of class `Layer`.
        """
        # 1. filter `self` in args
        if args and isinstance(args[0], layers.Layer):
            args = args[1:]
244
        # 2. convert tensor and numpy array into InputSpec
245
        _args, _kwargs = function_spec.unified_args_and_kwargs(args, kwargs)
246 247 248 249
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = function_spec.args_to_input_spec(_args, _kwargs)
250 251

        # 3. check whether hit the cache or build a new program for the input arguments
252 253 254 255 256 257
        return CacheKey(
            function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            class_instance,
        )
258 259 260

    def __hash__(self):
        error_msg = "Arguments to a `@paddle.jit.to_static` must be a hashable Python objects (or nested structures of these types)."
261
        with_hook = self.kwargs.get("with_hook", False)
262
        is_train = self.kwargs.get("is_train", False)
263 264 265 266 267 268 269 270 271
        return hash(
            (
                id(self.function_spec),
                make_hashable(self.input_args_with_spec, error_msg),
                make_hashable(self.input_kwargs_with_spec, error_msg),
                self._spec_names_id,
                self.class_instance,
                with_hook,
                is_train,
272
                self._new_ir_flags,
273 274
            )
        )
275 276 277 278 279 280 281 282

    def __eq__(self, other):
        return (type(self) is type(other)) and hash(self) == hash(other)

    def __neq__(self, other):
        return not self == other

    def __repr__(self):
283
        return "id(function_spec): {}, input_args_with_spec: {}, input_kwargs_with_spec: {}, class_instance: {}".format(
284 285 286 287 288
            id(self.function_spec),
            self.input_args_with_spec,
            self.input_kwargs_with_spec,
            self.class_instance,
        )
289 290 291 292 293 294 295 296 297


def unwrap_decorators(func):
    """
    Unwraps a decorated function and returns the decorator list and inner target.
    """
    decorators = []
    cur = func
    while True:
298
        if isinstance(cur, StaticFunction):
299 300 301 302 303
            decorators.append(cur)
            # Note: if `cur` is a method, keep it as bound method of class.
            instance = cur._class_instance
            if instance is not None:
                cur = cur.dygraph_function.__get__(instance)
304
            else:
305 306 307 308
                cur = cur.dygraph_function
        else:
            break
    return decorators, cur
309

310

311
class StaticFunction:
312
    def __init__(self, function, input_spec=None, **kwargs):
313
        """
314
        Initializes a `StaticFunction`.
315 316 317 318

        Args:
            function(callable): A function or method that will be converted into static program.
            input_spec(list[InputSpec]): list of InputSpec to specify the `shape/dtype/name` information for each input argument, default None.
319
            **kwargs(dict): other arguments like `build_strategy` et.al.
320 321
        """
        # save the instance `self` while decorating a method of class.
322

323
        if inspect.ismethod(function):
324 325
            self._dygraph_function = function.__func__
            self._class_instance = function.__self__
326

327 328 329
            if not hasattr(self._class_instance, '_original_funcs'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
330 331
                    "please ensure the class inherits from nn.Layer"
                )
332
            self._class_instance._original_funcs[
333 334
                function.__name__
            ] = self._dygraph_function
335 336 337 338
        else:
            self._dygraph_function = function
            self._class_instance = None

339
        if input_spec is not None and prim_or_cinn_is_enabled(
340
            kwargs.get("build_strategy", None), kwargs.get("backend", None)
341
        ):
J
Jiabin Yang 已提交
342 343
            from paddle.static import InputSpec

344
            for spec in flatten(input_spec):
J
Jiabin Yang 已提交
345
                if isinstance(spec, InputSpec) and -1 in spec.shape:
346 347 348 349 350 351
                    input_spec = None
                    warnings.warn(
                        'Now prim and cinn do not support -1 shape, but input_spec has -1 shape so we set it to None.'
                    )
                    break

352 353 354
        self._input_spec = input_spec
        self._function_spec = FunctionSpec(function, input_spec)
        self._program_cache = ProgramCache()
355
        self._descriptor_cache = weakref.WeakKeyDictionary()
356
        # Note: Hold a reference to ProgramTranslator for switching `enable_to_static`.
357
        self._program_trans = ProgramTranslator()
358
        self._kwargs = kwargs
359
        self._training = True
360 361
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
362 363 364 365 366 367 368
        self._property = kwargs.get("property", False)

    @property
    def is_property(self):
        # whether is class proproty to be exported.
        return self._property

369
    def train(self):
370 371
        if (
            isinstance(self._class_instance, layers.Layer)
372
            and self._class_instance.training is False
373
        ):
374 375 376
            raise RuntimeError(
                "Failed to switch train mode. {} is a Layer's method, "
                "please use Layer.train() to switch train mode.".format(
377 378 379
                    self.dygraph_function
                )
            )
380 381 382
        self._training = True

    def eval(self):
383 384
        if (
            isinstance(self._class_instance, layers.Layer)
385
            and self._class_instance.training is True
386
        ):
387 388 389
            raise RuntimeError(
                "Failed to switch eval mode. {} is a Layer's method, "
                "please use Layer.eval() to switch eval mode.".format(
390 391 392
                    self.dygraph_function
                )
            )
393
        self._training = False
394 395 396 397 398 399

    def __get__(self, instance, owner):
        """
        Overrides this method to parse the class instance and call bound method correctly.

        For example:
400

401 402 403 404
            '''
            class Net(Layer):
                def __init__(self):
                    pass
405

406 407 408 409 410 411 412
                @paddle.jit.to_static
                def forward(self, x, y):
                    return x + y

            net = Net()
            out = net(x, y)
            '''
413

414 415
        In above case, `net(x, y)` will call `net.forward(x, y)` firstly that is a bound method
        of `Net` instance. After decorated by `@paddle.jit.to_static`, it will firstly to call `__get__`
416
        to parse the class instance correctly instead of the `StaticFunction` instance.
417
        """
418 419 420
        if instance not in self._descriptor_cache:
            if instance is None:
                return self
421
            # Note(Aurelius84): To construct new instance of StaticFunction when we
422 423 424 425 426 427 428 429
            # first encouter the bound function of layer and cache it.
            new_static_layer = self._clone()
            new_static_layer._class_instance = instance
            self._descriptor_cache[instance] = new_static_layer

        return self._descriptor_cache[instance]

    def _clone(self):
430
        return self.__class__(
431
            self.dygraph_function, self._input_spec, **self._kwargs
432
        )
433 434

    def __call__(self, *args, **kwargs):
435
        """
436 437 438 439
        Supports to call the returned instance with input `args` and `kwargs` directly.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
440
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
441 442 443

        Return:
            Outputs of decorated function.
444
        """
445 446
        if self._property:
            return self._call_dygraph_function(*args, **kwargs)
447

448
        # 1. call dygraph function directly if not enable `declarative`
449
        if not self._program_trans.enable_to_static:
450 451 452 453
            # NOTE(liym27):
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**. StaticFunction.__call__ will run many times, it is appropriate to
            # display this warning message only once.
454
            logging_utils.warn(
R
Ryan 已提交
455
                "The decorator '@paddle.jit.to_static' does NOT work when setting 'paddle.jit.enable_to_static' to False. "
456
                "We will just return dygraph output. If you would like to get static graph output, please call API "
R
Ryan 已提交
457
                "paddle.jit.enable_to_static(True)"
458
            )
459 460
            return self._call_dygraph_function(*args, **kwargs)

461
        if not in_dynamic_mode():
462 463
            raise RuntimeError(
                "Failed to run the callable object {} decorated by '@paddle.jit.to_static', "
464
                "because it is NOT in dynamic mode. Please disable the static graph mode to enter dynamic mode with the "
465
                "following API: paddle.disable_static().".format(
466 467 468
                    self.dygraph_function
                )
            )
469

X
xiongkun 已提交
470
        return self._perform_call(*args, **kwargs)
471

472 473
    def _is_train_mode(self):
        if self._class_instance is not None:
474 475 476
            if not hasattr(self._class_instance, 'training'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
477 478
                    "please ensure the class inherits from nn.Layer"
                )
479 480 481 482
            return self._class_instance.training
        else:
            return self._training

483 484 485 486 487 488
    def _call_dygraph_function(self, *args, **kwargs):
        """
        Calls dygraph function directly and returns the outputs.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
489
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
490 491 492 493

        Return:
            Outputs of dygraph function.
        """
494
        return self.dygraph_function(*args, **kwargs)
495

496 497 498 499 500 501 502 503 504
    def _raise_when_property(self):
        """raise RuntimeError when property=True

        Raises:
            RuntimeError: can not call this func when property=True
        """
        if self.is_property:
            raise RuntimeError("Can not call the func when property=True.")

X
xiongkun 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    def get_concrete_program(self, *args, **kwargs):
        raise NotImplementedError("Not implemented yet.")

    def get_concrete_program_with_cache_key(self, cached_key):
        raise NotImplementedError("Not implemented yet.")

    def get_traced_count(self):
        raise NotImplementedError("Not implemented yet.")

    @property
    def code(self):
        raise NotImplementedError("Not implemented yet.")

    @property
    def dygraph_function(self):
        """
        Returns the original decorated function.
        """
        if self._class_instance is not None:
            return self._dygraph_function.__get__(self._class_instance)
        else:
            return self._dygraph_function

    @property
    def concrete_program(self):
        raise NotImplementedError("Not implemented yet.")

    def concrete_program_specify_input_spec(
        self, input_spec=None, with_hook=False, is_prim_infer=False
    ):
        raise NotImplementedError("Not implemented yet.")

    def rollback(self):
        """
        Rollback into original dygraph functions for current class instance.

        Returns:
            Function or Method

        Example::
            .. code-block:: python

                >>> # doctest: +SKIP
                >>> import paddle

                >>> class Net(paddle.nn.Layer):
                ...     def __init__(self):
                ...         super().__init__()
                ...
                ...     def forward(self, x, flag=True):
                ...         if flag:
                ...             out = x + 1
                ...         else:
                ...             out = x - 1
                ...         return out
                ...
                >>> x = paddle.randn([10, 1], 'float32')
                >>> net = paddle.jit.to_static(Net())  # convert into static graph mode
                >>> out = net(x)

                >>> net.forward.rollback()  # rollback into dygraph mode
                >>> out = net(x)
        """

        def rollback_impl(class_instance):
            for name, func in class_instance._original_funcs.items():
                setattr(class_instance, name, func.__get__(class_instance))

            for sublayer in class_instance.sublayers(include_self=False):
                rollback_impl(sublayer)

        if self._class_instance is None:
            return self._dygraph_function

        # only rollback sub-functions on path of top _dygraph_function
        func_name = self._dygraph_function.__name__
        assert (
            func_name in self._class_instance._original_funcs
        ), "Not Found function '{}' in class '{}'.".format(
            func_name, self._class_instance.__name__
        )
        func = self._class_instance._original_funcs[func_name]
        setattr(
            self._class_instance, func_name, func.__get__(self._class_instance)
        )

        for sublayer in self._class_instance.sublayers(include_self=False):
            rollback_impl(sublayer)

        return getattr(self._class_instance, func_name)

    def __deepcopy__(self, memo):
        """
        Customized behavior for copy.deepcopy, return original decorated function instead
        of a new StaticFunction Object. StaticFunction itself is not copyable becuase it's
        associated with class_instance.

        We add __deepcopy__ here only for the following usage:

        Example::
            .. code-block:: python

                >>> import copy
                >>> import paddle

                >>> class Net(paddle.nn.Layer):
                ...     def __init__(self):
                ...         super().__init__()
                ...
                ...     def forward(self, x, flag=True):
                ...         if flag:
                ...             out = x + 1
                ...         else:
                ...             out = x - 1
                ...         return out
                ...
                >>> x = paddle.randn([10, 1], 'float32')
                >>> net = paddle.jit.to_static(Net())  # convert into static graph mode

                >>> copy_net = copy.deepcopy(net)      # deepcopy a new net without @to_static

        Please attention that original 'net' will unwrap @to_static and rollback into simple Layer.
        """
        if self._class_instance is not None:
            net_name = type(self._class_instance).__name__
            logging_utils.log(
                level=-1,
                msg="Not recommend to deepcopy '{}' decorated with @to_static, it has side effect that will"
                " rollback into original state before @to_static. Please deepcopy '{}' before applying @to_static.".format(
                    net_name, net_name
                ),
            )
            self.rollback()
            return self._dygraph_function.__get__(
                memo[id(self._class_instance)]
            )
        else:
            return self._dygraph_function

    @property
    def inputs(self):
        raise NotImplementedError("Not implemented yet.")

    @property
    def outputs(self):
        raise NotImplementedError("Not implemented yet.")

    @property
    def main_program(self):
        raise NotImplementedError("Not implemented yet.")

    @property
    def program_cache(self):
        raise NotImplementedError("Not implemented yet.")

    @property
    def function_spec(self):
        raise NotImplementedError("Not implemented yet.")


def raise_error_template(func_str):
    def _raise_error(*args, **kwargs):
        error_template = (
            "Can't call {func} when enable_fallback=True."
            "Use paddle.jit.to_static(enable_fallback=False) instead."
        )
        raise RuntimeError(error_template.format(func=func_str))

    return _raise_error


class SymbolicStaticFunction(StaticFunction):
    def __init__(self, function, input_spec=None, **kwargs):
        if input_spec is not None:
            warnings.warn(
                "\nSymbolic Trace don't support input_spec arguments. It will Will not produce any effect.\n"
                "1. You can disable fallback mode by `paddle.jit.to_static(enable_fallback=False)` to switch to AST to static, then you can assign input spec.\n"
            )
        super().__init__(function, input_spec, **kwargs)
        self.last_call_input_spec = None

    def _perform_call(self, *args, **kwargs):
        args, kwargs = self._function_spec.unified_args_and_kwargs(args, kwargs)
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = self._function_spec.args_to_input_spec(args, kwargs)
        self.last_call_input_spec = input_args_with_spec

        try:
            from sot import symbolic_translate
        except:
            import os

            os.system(
                "pip install git+https://github.com/PaddlePaddle/PaddleSOT@develop"
            )
            from sot import symbolic_translate

        build_strategy = self._kwargs.get("build_strategy", None)
        traced_fun = symbolic_translate(
            self._dygraph_function, build_strategy=build_strategy
        )
        if self._class_instance is not None:
            args = (self._class_instance,) + args
        return traced_fun(*args, **kwargs)

    @property
    def code(self):
        raise_error_template("code")()

    @property
    def concrete_program(self):
        raise_error_template("concrete_program")()

    concrete_program_specify_input_spec = raise_error_template(
        "concrete_program_specify_input_spec"
    )
    get_concrete_program = raise_error_template("get_concrete_program")
    get_concrete_program_with_cache_key = raise_error_template(
        "get_concrete_program_with_cache_key"
    )
    get_traced_count = raise_error_template("get_traced_count")

    @property
    def inputs(self):
        raise_error_template("inputs")()

    @property
    def outputs(self):
        raise_error_template("outputs")()

    @property
    def main_program(self):
        raise_error_template("main_program")()

    @property
    def program_cache(self):
        raise_error_template("program_cache")()

    @property
    def function_spec(self):
        raise_error_template("function_spec ")()


class ASTStaticFunction(StaticFunction):
    """
    Wrapper class to Manage program conversion of decorated function.

    """

    def __init__(self, function, input_spec=None, **kwargs):
        super().__init__(function, input_spec, **kwargs)

    def _perform_call(self, *args, **kwargs):
        # 1. trace ops from dygraph layers and cache the generated program.
        args, kwargs = self._function_spec.unified_args_and_kwargs(args, kwargs)

        try:
            concrete_program, partial_program_layer = self.get_concrete_program(
                *args, **kwargs, is_train=self._is_train_mode()
            )
            # 2. synchronize self.training attribute.
            if isinstance(self._class_instance, layers.Layer):
                partial_program_layer.training = self._class_instance.training
            else:
                partial_program_layer.training = self._training

            partial_program_layer._cuda_graph_capture_mode = (
                self._cuda_graph_capture_mode
            )
            partial_program_layer._cuda_graph_pool_id = self._cuda_graph_pool_id

            # 3. return outputs.
            try:
                return partial_program_layer(args)
            except Exception as e:
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                    raise
        except Exception as e:
            error_data = getattr(e, error.ERROR_DATA, None)
            if error_data:
                error_data.raise_new_exception()
            else:
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
                    " if you can't handle this {} yourself.".format(type(e))
                )
                raise e

797 798 799 800 801 802 803 804 805 806 807
    def get_concrete_program(self, *args, **kwargs):
        """
        Returns traced concrete program and inner executable partial layer.

        Args:
            *args(tuple): input arguments values or InputSpec
            **kwargs(dict) : input kwargs values.

        Returns:
            Traced ConcreteProgram and executable translated Layer.
        """
808
        self._raise_when_property()
809

810
        with_hook = kwargs.get("with_hook", False)
811
        is_train = kwargs.get("is_train", True)
812
        is_prim_infer = kwargs.get("is_prim_infer", False)
813 814 815 816
        if "is_train" in kwargs:
            kwargs.pop("is_train")
        if "with_hook" in kwargs:
            kwargs.pop("with_hook")
817 818
        if "is_prim_infer" in kwargs:
            kwargs.pop("is_prim_infer")
819 820
        # 1. unify args/kwargs and replace Tensor with InputSpec
        if len(args) != len(self._function_spec.args_name):
821
            args, kwargs = self._function_spec.unified_args_and_kwargs(
822 823 824 825 826 827
                args, kwargs
            )
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = self._function_spec.args_to_input_spec(args, kwargs)
828 829

        # 2. generate cache key
830 831 832 833 834 835 836
        cache_key = CacheKey(
            self._function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            self._class_instance,
            **self._kwargs,
            with_hook=with_hook,
837
            is_train=is_train,
838
        )
839 840 841 842 843 844 845 846 847 848 849
        if is_prim_infer:
            (
                concrete_program,
                partial_program_layer,
            ) = self._program_cache.get_program_without_cache(cache_key)
        else:
            # 3. check whether hit the cache or build a new program for the input arguments
            concrete_program, partial_program_layer = self._program_cache[
                cache_key
            ]
        return concrete_program, partial_program_layer
850

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    def get_concrete_program_with_cache_key(self, cached_key):
        """
        Returns traced concrete program and inner executable partial layer by cached key.

        Args:
            cached_key(CacheKey): The cached key use to get concrete program.

        Returns:
            Traced ConcreteProgram and executable translated Layer.
        """
        self._raise_when_property()
        (
            concrete_program,
            partial_program_layer,
        ) = self._program_cache.get_program_without_cache(cached_key)
866 867 868 869 870 871 872 873 874 875 876 877 878
        return concrete_program, partial_program_layer

    def get_traced_count(self):
        """
        Returns the number of traced programs for the decorated function.
        """
        return len(self._program_cache)

    @property
    def code(self):
        """
        Returns the source code of transformed static function for debugging.
        """
879
        static_func = convert_to_static(self.dygraph_function)
880 881 882 883 884 885 886
        source_code = func_to_source_code(static_func)
        return source_code

    @property
    def concrete_program(self):
        """
        Returns recent ConcreteProgram instance of decorated function.
A
Aurelius84 已提交
887 888 889 890

        Examples:
            .. code-block:: python

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
                >>> # doctest: +SKIP
                >>> import paddle
                >>> from paddle.jit import to_static
                >>> from paddle.static import InputSpec

                >>> paddle.disable_static()

                >>> def foo(x, y):
                ...     z = x + y
                ...     return z
                ...
                >>> # usage 1:
                >>> decorated_foo = to_static(foo, input_spec=[InputSpec([10], name='x'), InputSpec([10], name='y')])
                >>> print(decorated_foo.concrete_program)

                >>> # usage 2:
                >>> decorated_foo = to_static(foo)
                >>> out_foo = decorated_foo(paddle.rand([10]), paddle.rand([10]))
                >>> print(decorated_foo.concrete_program)
910
        """
911 912
        return self.concrete_program_specify_input_spec(input_spec=None)

913
    def concrete_program_specify_input_spec(
914
        self, input_spec=None, with_hook=False, is_prim_infer=False
915
    ):
916 917 918
        """
        Returns recent ConcreteProgram instance of decorated function while
        specifying input_spec. If the self._function_spec already has
919
        input_spec, it will check the compatibility of input input_spec and
920 921 922 923 924 925 926
        the self._function_spec.input_spec. If input input_spec=None, then
        this method uses self._function_spec.input_spec

        args:
            input_spec (list[InputSpec], optional): Describes the input of
                the translate function.
        """
927
        self._raise_when_property()
928 929 930 931
        # if specific the `input_spec`, the length of program_cache will always 1,
        # else, return the last one.
        cached_program_len = len(self._program_cache)
        # If specific `input_spec`, apply convertion from dygraph layers into static Program.
932 933
        # NOTE(jiabin): is_prim_infer indicates this method called by paddle.jit.save and it is worked in prim mode

934
        if cached_program_len == 0:
C
Chen Weihang 已提交
935 936 937
            desired_input_spec = input_spec
            if self._function_spec.input_spec is not None:
                if input_spec is not None and not input_specs_compatible(
938 939
                    flatten(input_spec), flatten(self._function_spec.input_spec)
                ):
940
                    raise ValueError(
941 942 943 944
                        "The `input_spec`: {} used to construct concrete_program is conflict with the `input_spec`: {} in `@paddle.jit.to_static`".format(
                            input_spec, self._function_spec.input_spec
                        )
                    )
C
Chen Weihang 已提交
945 946 947
                # NOTE(chenweihang): we should always translated program based on the `input_spec`
                # decorated on forward if it is valid
                desired_input_spec = self._function_spec.input_spec
948 949
                if input_spec is not None:
                    logging_utils.warn(
950 951 952 953
                        "\n\nYou have specified `input_spec` both in function definition (higher priority) and `paddle.jit.save` (will be ignored.)\n\n\t Using: {}\n\n\t Ignore: {}\n".format(
                            desired_input_spec, input_spec
                        )
                    )
954

955
            has_input_spec = desired_input_spec is not None
A
Aurelius84 已提交
956
            if has_input_spec:
C
Chen Weihang 已提交
957
                concrete_program, _ = self.get_concrete_program(
958 959
                    *desired_input_spec,
                    with_hook=with_hook,
960
                    is_train=self._is_train_mode(),
961
                    is_prim_infer=is_prim_infer,
962
                )
963
                return concrete_program
964
            else:
A
Aurelius84 已提交
965
                raise ValueError(
966 967 968 969
                    "No valid transformed program for {}.\n\t    Please specific `input_spec` in `@paddle.jit.to_static` or feed input tensor to call the decorated function at once.\n".format(
                        self._function_spec
                    )
                )
970 971 972
        elif with_hook:
            cache_key = self._program_cache._recent_cache_key
            cache_key.kwargs["with_hook"] = True
973 974 975 976 977 978 979 980
            if not is_prim_infer:
                concrete_program, _ = self._program_cache[cache_key]
                return concrete_program
            else:
                concrete_program, _ = self.get_concrete_program_with_cache_key(
                    cache_key
                )
                return concrete_program
981 982
        # If more than one programs have been cached, return the recent converted program by default.
        elif cached_program_len > 1:
983
            logging_utils.warn(
984 985 986 987
                "Current {} has more than one cached programs: {}, the last traced progam will be return by default.".format(
                    self._function_spec, cached_program_len
                )
            )
988 989 990 991 992 993 994 995 996 997 998 999
        if not is_prim_infer:
            cache_key, (
                concrete_program,
                partial_layer,
            ) = self._program_cache.last()
            return concrete_program
        else:
            cache_key = self._program_cache._recent_cache_key
            concrete_program, _ = self.get_concrete_program_with_cache_key(
                cache_key
            )
            return concrete_program
1000

1001 1002 1003 1004 1005
    @property
    def inputs(self):
        """
        Returns input tensors of recent converted static program.
        """
1006
        self._raise_when_property()
1007 1008
        concrete_program = self.concrete_program
        inputs = [
1009 1010
            var
            for var in flatten(concrete_program.inputs)
1011 1012 1013
            if isinstance(var, framework.Variable)
        ]
        return inputs
1014

1015
    @property
1016 1017 1018 1019
    def outputs(self):
        """
        Returns output tensors of recent converted static program.
        """
1020
        self._raise_when_property()
1021 1022
        concrete_program = self.concrete_program
        outputs = [
1023 1024
            var
            for var in flatten(concrete_program.outputs)
1025 1026 1027 1028
            if isinstance(var, framework.Variable)
        ]

        return outputs
1029

1030
    @property
1031 1032 1033 1034
    def main_program(self):
        """
        Returns recent converted static main program.
        """
1035
        self._raise_when_property()
1036 1037 1038
        concrete_program = self.concrete_program
        main_program = concrete_program.main_program
        return main_program
1039

1040 1041 1042
    @property
    def program_cache(self):
        return self._program_cache
1043

1044 1045 1046
    @property
    def function_spec(self):
        return self._function_spec
1047 1048


1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
def _verify_init_in_dynamic_mode(class_instance):
    """
    Verifies the instance is initialized in dynamic mode.
    """
    if isinstance(class_instance, layers.Layer):
        if not class_instance._init_in_dynamic_mode:
            raise RuntimeError(
                " `paddle.jit.to_static` is only available in dynamic mode. Please call `paddle.disable_static()` before "
                "initializing your Layer class `{}` . Because parameters of Layer class should be initialized firstly "
                "in dynamic mode while applying transformation.".format(
1059 1060 1061
                    class_instance
                )
            )
1062 1063


1064
class HookHelper:
1065 1066 1067 1068 1069 1070 1071 1072 1073
    """
    Only For converting pre/post hooks operation in outermost layer while jit.save.
    Because hooks in sublayer have been processed automatically.
    """

    def __init__(self, func, class_instance, with_hook=False):
        self.func = func
        self.class_instance = class_instance
        self.with_hook = with_hook
1074 1075 1076
        self.need_apply_hook = (
            with_hook
            and isinstance(self.class_instance, layers.Layer)
1077
            and func.__name__ == "forward"
1078
        )
1079 1080 1081 1082 1083

    def apply_pre_hooks(self, inputs):
        """
        Apply _forward_pre_hooks from outermost layer
        """
1084 1085
        if not self.need_apply_hook:
            return inputs
1086 1087 1088 1089 1090 1091

        inputs = inputs[1:]
        for forward_pre_hook in self.class_instance._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self.class_instance, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
1092
                    hook_result = (hook_result,)
1093 1094 1095 1096 1097 1098 1099 1100
                inputs = hook_result

        return [self.class_instance] + list(inputs)

    def apply_post_hooks(self, inputs, outputs):
        """
        Apply _forward_post_hooks from outermost layer
        """
1101 1102
        if not self.need_apply_hook:
            return outputs
1103 1104

        inputs = inputs[1:]
1105 1106 1107 1108 1109 1110
        for (
            forward_post_hook
        ) in self.class_instance._forward_post_hooks.values():
            hook_result = forward_post_hook(
                self.class_instance, inputs, outputs
            )
1111 1112 1113 1114 1115 1116 1117
            if hook_result is not None:
                outputs = hook_result

        inputs.insert(0, self.class_instance)
        return outputs


1118
class ConcreteProgram:
1119
    __slots__ = [
1120 1121 1122 1123 1124 1125 1126
        'inputs',
        'outputs',
        'main_program',
        "startup_program",
        "parameters",
        "function",
        'kwargs',
1127 1128
    ]

1129 1130 1131 1132 1133 1134 1135 1136
    def __init__(
        self,
        inputs,
        outputs,
        parameters,
        function,
        main_program,
        startup_program=None,
1137
        **kwargs,
1138
    ):
1139 1140 1141
        self.inputs = inputs
        self.outputs = outputs
        self.main_program = main_program
1142
        self.startup_program = startup_program
1143
        self.parameters = parameters
1144
        self.function = function
1145
        self.kwargs = kwargs
1146 1147 1148

    @staticmethod
    @switch_to_static_graph
1149 1150 1151
    def from_func_spec(
        func_spec, input_spec, input_kwargs_spec, class_instance, **kwargs
    ):
1152
        """
1153 1154
        Builds the main_program with specialized inputs and returns outputs
        of program as fetch_list.
1155 1156 1157

        Args:
            func_spec(FunctionSpec): A FunctionSpec instance for decorated function.
1158
            input_spec(list[InputSpec]):
1159
        """
1160 1161 1162
        # verify the instance is initialized in imperative mode.
        _verify_init_in_dynamic_mode(class_instance)

1163
        # Transforms dygraph function into static function and caches it.
1164
        dygraph_function = func_spec.dygraph_function
1165
        static_func = convert_to_static(dygraph_function)
1166
        # apply pre\post hook for outermost layer
1167 1168 1169
        hook_helper = HookHelper(
            dygraph_function, class_instance, kwargs.get("with_hook", False)
        )
1170

1171 1172
        main_program, startup_program = framework.Program(), framework.Program()
        # Note: The random seed should be synchronized into cached program
1173
        # if set in `fluid.dygraph_guard` because some ops rely on it, such as
1174
        # `fluid.layers.dropout`.
1175
        main_program.random_seed = framework.default_main_program().random_seed
1176 1177 1178
        startup_program.random_seed = (
            framework.default_startup_program().random_seed
        )
1179

1180
        with framework.program_guard(main_program, startup_program):
1181
            with _switch_declarative_mode_guard_(is_declarative=True):
1182
                # 1. Adds `paddle.static.data` layers for input if needed
1183
                static_inputs = func_spec.to_static_inputs_with_spec(
1184 1185
                    input_spec, main_program
                )
1186
                _kwargs = func_spec.to_static_inputs_with_spec(
1187 1188
                    input_kwargs_spec, main_program
                )
1189
                if class_instance:
1190 1191 1192
                    static_inputs = tuple(
                        [class_instance] + list(static_inputs)
                    )
1193

1194
                # 2. Builds program only once and returns the output Variables.
1195 1196 1197
                with param_guard(
                    get_parameters(class_instance, False)
                ), param_guard(get_buffers(class_instance, False)):
1198
                    try:
1199 1200
                        # only for jit.save, do nothing while train and eval process
                        inputs = hook_helper.apply_pre_hooks(static_inputs)
1201 1202
                        if _kwargs:
                            outputs = static_func(*inputs, **_kwargs)
1203 1204
                        else:
                            outputs = static_func(*inputs)
1205
                        outputs = hook_helper.apply_post_hooks(inputs, outputs)
1206 1207
                    except BaseException as e:
                        # NOTE: If e is raised in compile time, e should be attached to ERROR_DATA here.
1208
                        error.attach_error_data(e)
1209 1210 1211
                        error_data = getattr(e, error.ERROR_DATA, None)
                        if error_data:
                            error_data.raise_new_exception()
1212 1213
                        raise

1214 1215 1216 1217 1218 1219 1220
                # 3. Gets all ParamBases and buffered VarBases in the function
                all_parameters_and_buffers = (
                    ProgramTranslator.get_instance()._params_recorder.pop(
                        main_program
                    )
                )

1221
                if outputs is not None:
1222 1223 1224 1225
                    need_wrap_into_list = (
                        not isinstance(outputs, (tuple, list))
                        or len(outputs) == 1
                    )
1226 1227
                    if need_wrap_into_list:
                        outputs = [outputs]
1228

1229 1230
        main_program = update_op_callstack_with_origin_info(main_program)

1231 1232 1233 1234 1235 1236 1237
        return ConcreteProgram(
            inputs=static_inputs,
            outputs=outputs,
            parameters=all_parameters_and_buffers,
            function=dygraph_function,
            main_program=main_program,
            startup_program=startup_program,
1238
            **kwargs,
1239
        )
1240 1241


1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
class ParametersRecorder:
    def __init__(self):
        self.params_dict = {}

    @synchronized
    def add(self, program, param):
        """use the default_program as key, append param the parameter list."""
        key = self._program_hash(program)
        if key not in self.params_dict:
            self.params_dict[key] = set()
        params = self.params_dict[key]
        params.add(param)

    def pop(self, program):
        params = self.params_dict.get(self._program_hash(program))
        if params is None:
            return []
        del self.params_dict[self._program_hash(program)]
        return list(params)

    def _program_hash(self, program):
        """
        because program is not deleted while calling from_func_spec.
        so it's ok to use id(program)
        """
        return id(program)


1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
class ParametersMap:
    def __init__(self):
        self.params_dict = {}

    @synchronized
    def add(self, program, id, param):
        """use the default_program as key, append param the parameter list."""
        key = self._program_hash(program)
        if key not in self.params_dict:
            self.params_dict[key] = {}

        params = self.params_dict[key]
        params[id] = param

    def get(self, program, id):
        params = self.params_dict.get(self._program_hash(program))
        if params is None:
            return None
        if id in params.keys():
            return params[id]
        return None

    def _program_hash(self, program):
        """
        because program is not deleted while calling from_func_spec.
        so it's ok to use id(program)
        """
        return id(program)


1300
class FallbackProgramLayer:
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    __slots__ = [
        '_instance',
        '_dy_func',
        'training',
        '_cuda_graph_capture_mode',
        '_cuda_graph_pool_id',
    ]

    def __init__(self, instance, dy_func):
        self._instance = instance
        self._dy_func = dy_func

    def __call__(self, inputs):
        return self._dy_func(*inputs)

    def __getattr__(self, key):
        if key not in self.__slots__:
            raise RuntimeError(
                "There raises a exception after applying `@paddle.jit.to_static()` and already switch into fallback mode. \n"
                "You can't get attribute for a fallback program layer. Please check `to_static.error` file for detail."
            )
        elif key in ['training']:
            if self._instance is not None:
                return getattr(self._instance, key)
            return

        return super().__getattr__(key)

    def __setattr__(self, key, value):
        if key not in self.__slots__:
            raise RuntimeError(
                "There raises a exception after applying `@paddle.jit.to_static()` and already switch into fallback mode. \n"
                "You can't get attribute for a fallback program layer. Please check `to_static.error` file for detail."
            )
        elif key in ['training']:
            if self._instance is not None:
                return setattr(self._instance, key, value)
            return

        return super().__setattr__(key, value)


1343
class ProgramCache:
1344 1345 1346
    """
    Wrapper class for the program functions defined by dygraph function.
    """
1347

1348 1349
    dy2static_error_file = "to_static.error"

1350
    def __init__(self):
1351
        # {hash_id : (concrete_program, partial_layer)}
1352
        self._caches = collections.OrderedDict()
1353
        # trace mostly recent used program
1354
        self._recent_key = None
1355
        self._recent_cache_key = None
1356

1357
    def _build_once(self, cache_key):
1358 1359
        # TODO(Aurelius84): Need a gloabl FLAGS to enable/disable to_prim
        enable_prim = cache_key.kwargs['build_strategy'].build_cinn_pass
1360

1361 1362 1363 1364 1365 1366 1367 1368
        # NOTE(xiongkun): Need a global FLAGS to enable/disable fallback
        enable_fallback = enable_prim
        try:
            concrete_program = ConcreteProgram.from_func_spec(
                func_spec=cache_key.function_spec,
                input_spec=cache_key.input_args_with_spec,
                input_kwargs_spec=cache_key.input_kwargs_with_spec,
                class_instance=cache_key.class_instance,
1369
                **cache_key.kwargs,
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
            )
        except Exception as e:
            if enable_fallback:
                warnings.warn(
                    "Exception is thrown while applying @paddle.jit.to_static. It will fallback into dygraph mode for training.\n"
                    "1. You can check `to_static.error` file in current workspace directory for detail.\n"
                    "2. In fallback mode, you can only do training, can't call paddle.jit.save(). Please modify model code according `to_static.error` firstly"
                )
                # TODO(xiongkun) change different file name to avoid overwrite.
                with open(self.dy2static_error_file, "w") as fp:
                    fp.write(str(e))
1381

1382 1383 1384 1385 1386 1387 1388
                fallback_layer = FallbackProgramLayer(
                    cache_key.class_instance,
                    cache_key.function_spec.dygraph_function,
                )
                return fallback_layer, fallback_layer
            else:
                raise
1389

1390 1391
        backend = cache_key.kwargs['backend']
        if prim_or_cinn_is_enabled(cache_key.kwargs['build_strategy'], backend):
1392
            for var in concrete_program.main_program.list_vars():
1393
                if var.type not in NO_SHAPE_VAR_TYPE and -1 in var.shape:
1394 1395 1396 1397 1398
                    warnings.warn(
                        "Now prim and cinn do not support -1 shape, but the shape of var {} is {}".format(
                            var.name, var.shape
                        )
                    )
1399

1400 1401 1402
        partial_program = partial_program_from(
            concrete_program, cache_key.class_instance is not None
        )
1403 1404 1405 1406 1407
        with backend_guard(backend):
            if core._is_fwd_prim_enabled():
                partial_program.set_hooker(
                    PrimHooker(concrete_program.main_program, backend)
                )
1408 1409
        return concrete_program, partial_program

1410
    def __getitem__(self, item):
1411
        if not isinstance(item, CacheKey):
1412 1413 1414 1415
            raise ValueError(
                'type(item) should be CacheKey, but received %s'
                % type_name(item)
            )
1416
        item_id = hash(item)
1417
        self._recent_cache_key = item
1418
        self._recent_key = item_id
1419 1420
        if item_id not in self._caches:
            self._caches[item_id] = self._build_once(item)
1421 1422 1423
            # Note: raise warnings if number of traced program is more than `max_tracing_count`
            current_tracing_count = len(self._caches)
            if current_tracing_count > MAX_TRACED_PROGRAM_COUNT:
1424
                logging_utils.warn(
1425
                    "Current traced program number: {} > `max_tracing_count`:{}. Too much cached programs will bring expensive overhead. "
1426 1427 1428 1429
                    "The reason may be: (1) passing tensors with different shapes, (2) passing python objects instead of tensors.".format(
                        current_tracing_count, MAX_TRACED_PROGRAM_COUNT
                    )
                )
1430

1431
        return self._caches[item_id]
1432

1433 1434 1435
    def get_program_without_cache(self, cache_key):
        return self._build_once(cache_key=cache_key)

1436
    def get_program(self, item):
1437
        if not isinstance(item, CacheKey):
1438
            raise ValueError(
1439 1440 1441
                "Input item's type should be FunctionSpec, but received %s"
                % type_name(item)
            )
1442 1443
        item_id = hash(item)
        if item_id not in self._caches:
1444
            raise RuntimeError(
1445
                "Failed to find program for input item, please decorate input function by `@paddle.jit.to_static`."
1446
            )
1447
        return self._caches[item_id]
1448

1449
    def last(self):
1450 1451 1452
        assert (
            len(self._caches) >= 1
        ), "No valid cached program in ProgramCache."
1453 1454
        assert self._recent_key is not None
        return self._recent_key, self._caches[self._recent_key]
1455

1456 1457 1458 1459
    def __len__(self):
        return len(self._caches)

    def concrete_programs(self):
1460
        return [cp for key, (cp, _) in self._caches.items()]
1461

1462 1463 1464
    def clear(self):
        self._caches = collections.OrderedDict()

1465

1466
class PrimHooker(PartialProgramLayerHook):
1467
    def __init__(self, original_program, backend):
1468 1469 1470 1471
        if len(original_program.blocks) > 1:
            raise ValueError(
                'The primitive mode only support one block currently.'
            )
1472
        self.backend = backend
1473
        self.custom_vjps = set()
1474 1475 1476 1477 1478 1479 1480
        with backend_guard(self.backend):
            if core._is_all_prim_enabled():
                self.custom_vjps = {
                    op.type
                    for op in original_program.block(0).ops
                    if core.has_comp_grad_op_maker(op.type)
                }
1481 1482

    def before_append_backward(self, forward_program):
1483 1484 1485 1486
        with backend_guard(self.backend):
            if core._is_fwd_prim_enabled():
                _to_prim(forward_program.blocks, blacklist=self.custom_vjps)
            return forward_program
1487 1488

    def after_append_backward(self, whole_program, backward_start_idx):
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        with backend_guard(self.backend):
            backward_length = (
                len(whole_program.block(0).ops) - backward_start_idx
            )
            if core._is_fwd_prim_enabled() and len(self.custom_vjps) != 0:
                # only process backward part of block
                _to_prim(whole_program.blocks, backward_length=backward_length)
            new_start_index = len(whole_program.block(0).ops) - backward_length
            if backward_length > 0:
                # only process forward part of block
                _to_prim(whole_program.blocks, start_idx=new_start_index)
            return whole_program, new_start_index
1501 1502

    def after_infer(self, infer_program):
1503 1504 1505 1506
        with backend_guard(self.backend):
            if core._is_fwd_prim_enabled():
                _to_prim(infer_program.block(0))
            return infer_program
1507 1508


1509
class ProgramTranslator:
1510
    """
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    Class to translate dygraph function into static graph function. The object
    of this class is a singleton.

    Args:
        None.

    Returns:
        ProgramTranslator: the singleton object.

    Examples:
        .. code-block:: python

1523
            >>> import paddle
1524

1525 1526 1527
            >>> # Two methods get same object because ProgramTranslator is a singleton
            >>> paddle.jit.dy2static.program_translator.ProgramTranslator()
            >>> paddle.jit.dy2static.program_translator.ProgramTranslator.get_instance()
1528

1529 1530
    """

1531
    _singleton_lock = threading.Lock()
1532 1533 1534 1535 1536 1537
    _instance = None

    @synchronized
    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = object.__new__(cls, *args, **kwargs)
1538
            cls._instance._initialized = False
1539 1540 1541 1542 1543
        return cls._instance

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
1544 1545
            with cls._singleton_lock:
                cls._instance = cls()
1546 1547 1548 1549 1550
        return cls._instance

    @classmethod
    def reset(cls):
        if cls._instance is not None:
1551
            cls._instance._initialized = False
1552 1553
            cls._instance.__init__()

1554
    def __init__(self):
1555
        # To make sure that calls __init__ only once.
1556
        if self._initialized:
1557
            return
1558 1559
        self._initialized = True
        self._program_cache = ProgramCache()
1560
        self._params_recorder = ParametersRecorder()
1561
        self._params_map = ParametersMap()
1562
        self.enable_to_static = True
1563

1564
    def enable(self, enable_to_static):
1565
        """
1566
        Enable or disable the converting from imperative to static graph by
1567 1568 1569
        ProgramTranslator globally.

        Args:
1570
            enable_to_static (bool): True or False to enable or disable converting to static.
1571 1572 1573 1574 1575 1576 1577

        Returns:
            None.

        Examples:
            .. code-block:: python

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()

                >>> x = paddle.ones([1, 2])
                >>> x_v = prog_trans.get_output(func, x)
                >>> print(x_v)
                Tensor(shape=[1, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
                [[0., 0.]])
1595
        """
1596 1597 1598 1599 1600 1601
        check_type(
            enable_to_static,
            "enable_to_static",
            bool,
            "ProgramTranslator.enable",
        )
1602
        self.enable_to_static = enable_to_static
1603

1604 1605
    def get_output(self, dygraph_func, *args, **kwargs):
        """
1606
        Returns the output dygraph Tensor for dygraph function. The dygraph
1607
        function will be translated into static graph function so the under
1608
        beneath numerical result will be calculated by static graph mode.
1609 1610 1611

        Args:
            dygraph_func (callable): the dygraph function.
1612 1613
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1614 1615

        Returns:
1616
            Tensor or tuple of Tensors: the dygraph Tensor containing digital result.
1617 1618 1619 1620

        Examples:
            .. code-block:: python

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()

                >>> x = paddle.ones([1, 2])
                >>> x_v = prog_trans.get_output(func, x)
                >>> print(x_v)
                Tensor(shape=[1, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
                [[0., 0.]])
1638
        """
1639 1640 1641
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_output"
1642

1643
        if not self.enable_to_static:
1644 1645
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**.
1646
            logging_utils.warn(
1647 1648 1649 1650
                "The ProgramTranslator.get_output doesn't work when setting ProgramTranslator.enable to False. "
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1651
            return dygraph_func(*args, **kwargs)
1652
        try:
1653
            function_spec = FunctionSpec(dygraph_func)
1654
            cache_key = CacheKey.from_func_and_args(
1655 1656 1657 1658 1659
                function_spec,
                args,
                kwargs,
                getattr(dygraph_func, '__self__', None),
            )
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
            _, partial_program_layer = self._program_cache[cache_key]

            if args and isinstance(args[0], layers.Layer):
                # Synchronize self.training attribute.
                partial_program_layer.training = args[0].training
                args = args[1:]
            try:
                return partial_program_layer(args)
            except BaseException as e:
                # NOTE:
                # 1. If e is raised in compile time, e should have been attached to ERROR_DATA before;
                # 2. If e raised in runtime, e should be attached to ERROR_DATA here.
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                raise
1676
        except BaseException as e:
1677 1678 1679 1680 1681 1682
            error_data = getattr(e, error.ERROR_DATA, None)
            if error_data:
                error_data.raise_new_exception()
            else:
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
1683 1684
                    " if you can't handle this {} yourself.".format(type(e))
                )
1685
                raise e
1686 1687 1688

    def get_func(self, dygraph_func):
        """
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
        Returns a callable function which converts imperative dygraph APIs of
        the input dygraph_func into declarative net-building APIs, which means
        it doesn't return immediate digital result as get_output does.
        Users should handle Program and Executor by themselves.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
            callable: converting imperative dygraph APIs into declarative
            net-building APIs.
1700 1701 1702 1703

        Examples:
            .. code-block:: python

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()
                >>> static_func = prog_trans.get_func(func)
                >>> print(callable(static_func))
                True
1717
        """
1718 1719 1720
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_func"
1721

1722
        if not self.enable_to_static:
1723
            logging_utils.warn(
1724 1725 1726
                "The ProgramTranslator.get_func doesn't work when setting ProgramTranslator.enable to False. We will "
                "just return dygraph output. Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1727
            return dygraph_func
1728

1729
        static_func = convert_to_static(dygraph_func)
1730 1731
        return static_func

1732 1733
    def get_program(self, dygraph_func, *args, **kwargs):
        """
1734
        Returns the translated static program and input/output Tensors from
1735 1736 1737 1738
        dygraph function. The users can use the program to run by executor.

        Args:
            dygraph_func (callable): the dygraph function.
1739 1740
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1741 1742 1743

        Returns:
            tuple of (main_program, startup_program, inputs, outputs) whose
1744
            types are (Program, Program, list of Tensors, list of Tensors).
1745 1746
            main_program: the converted main program.
            startup_program: the converted startup program.
1747 1748
            inputs: list of input Tensors which need to be fed.
            outputs: list of output Tensors which users can fetch.
1749 1750 1751 1752

        Examples:
            .. code-block:: python

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()
                >>> x = paddle.ones([1, 2])
                >>> main_prog, start_prog, inputs, outputs = prog_trans.get_program(func, x)
                >>> print([i.name for i in inputs])
                >>> # [u'generated_tensor_0'] the feed input Tensor name representing x
                >>> print([o.name for o in outputs])
                >>> # [u'_generated_var_4'] the fetch output Tensor name representing x_v
1769
        """
1770 1771 1772
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_program"
1773

1774
        if not self.enable_to_static:
1775
            logging_utils.warn(
1776 1777 1778 1779
                "The ProgramTranslator.get_program doesn't work when setting ProgramTranslator.enable to False."
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1780
            return dygraph_func(*args, **kwargs)
1781

1782
        function_spec = FunctionSpec(dygraph_func)
1783
        cache_key = CacheKey.from_func_and_args(
1784 1785
            function_spec, args, kwargs, getattr(dygraph_func, '__self__', None)
        )
1786 1787
        concrete_program, partial_program_layer = self._program_cache[cache_key]

1788 1789
        # Note: concrete_program hold all input/output infos include non-Variable
        input_vars = [
1790 1791
            var
            for var in concrete_program.inputs
1792 1793 1794
            if isinstance(var, framework.Variable)
        ]
        output_vars = [
1795 1796
            var
            for var in concrete_program.outputs
1797 1798 1799
            if isinstance(var, framework.Variable)
        ]

1800 1801 1802 1803 1804 1805
        return (
            concrete_program.main_program,
            concrete_program.startup_program,
            input_vars,
            output_vars,
        )
1806

1807 1808
    def get_code(self, dygraph_func):
        """
1809 1810 1811 1812 1813 1814
        Returns the translated static function string code from dygraph function.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
1815 1816 1817 1818 1819
            str: the string code of translated static function.

        Examples:
            .. code-block:: python

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()

                >>> code = prog_trans.get_code(func)
                >>> print(type(code))
                <class 'str'>
1834
        """
1835 1836 1837
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_code"
1838
        # Gets AST from dygraph function
1839 1840 1841

        unwrap_func = unwrap(dygraph_func)
        raw_code = inspect.getsource(unwrap_func)
1842 1843 1844 1845 1846
        code = textwrap.dedent(raw_code)
        root = gast.parse(code)

        # Transform AST
        dygraph_to_static = DygraphToStaticAst()
1847
        root = dygraph_to_static.get_static_ast(root)
1848 1849

        # Get source_code
1850
        source_code = ast_to_source_code(root)
1851 1852
        return source_code

1853
    def get_program_cache(self):
1854
        """
1855 1856 1857 1858 1859 1860 1861 1862 1863
        Returns the ProgramCache instance. This method is used by PaddlePaddle
        developers to manage program cache in ProgramTranslator. Normal users
        don't have to call this method.

        Returns:
            ProgramCache: ProgramCache instance of ProgramTranslator.

        Examples:
            .. code-block:: python
1864

1865
                >>> import paddle
1866

1867 1868
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()
                >>> prog_cache = prog_trans.get_program_cache()
1869
        """
1870
        return self._program_cache
R
Ryan 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886


def enable_to_static(enable_to_static_bool):
    """
    Enable or disable the converting from imperative to static graph by
    ProgramTranslator globally.

    Args:
        enable_to_static_bool (bool): True or False to enable or disable converting to static.

    Returns:
        None.

    Examples:
        .. code-block:: python

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
            >>> import paddle
            >>> @paddle.jit.to_static
            >>> def func(x):
            ...     if paddle.mean(x) > 0:
            ...         x_v = x - 1
            ...     else:
            ...         x_v = x + 1
            ...     return x_v
            ...
            >>> paddle.jit.enable_to_static(False)

            >>> x = paddle.ones([1, 2])
            >>> # ProgramTranslator is disabled so the func is run in dygraph
            >>> print(func(x))
            Tensor(shape=[1, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 0.]])
R
Ryan 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

    """
    check_type(
        enable_to_static_bool,
        "enable_to_static_bool",
        bool,
        "paddle.jit.enable_to_static",
    )
    _program_trans = ProgramTranslator()
    _program_trans.enable(enable_to_static_bool)
1913 1914 1915


@switch_to_static_graph
1916 1917 1918 1919 1920 1921 1922
def _to_prim(
    blocks,
    blacklist=frozenset(),
    whitelist=frozenset(),
    start_idx=-1,
    backward_length=-1,
):
1923
    """Swith to static graph and call to_prim."""
1924 1925 1926
    # TODO(Aurelius84): Fix this cycle import problem
    from paddle.incubate.autograd import primapi

1927 1928 1929 1930 1931 1932 1933
    primapi.to_prim(
        blocks,
        blacklist=blacklist,
        whitelist=whitelist,
        start_idx=start_idx,
        backward_length=backward_length,
    )