program_translator.py 52.2 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import collections
16
import inspect
17 18
import textwrap
import threading
19
import weakref
20

21
from paddle.fluid import _non_static_mode, framework
22
from paddle.fluid.data_feeder import check_type
23 24
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import param_guard, switch_to_static_graph
25
from paddle.fluid.layers.utils import flatten
26 27 28 29 30 31 32 33 34 35
from paddle.utils import gast

from . import error, logging_utils
from .ast_transformer import DygraphToStaticAst
from .function_spec import (
    FunctionSpec,
    _hash_spec_names,
    get_buffers,
    get_parameters,
)
36
from .origin_info import (
37 38 39 40
    attach_origin_info,
    create_and_update_origin_info_map,
    update_op_callstack_with_origin_info,
)
41
from .partial_program import partial_program_from
42
from .utils import (
43
    ALREADY_D2S,
44 45 46 47
    ast_to_func,
    ast_to_source_code,
    func_to_source_code,
    input_specs_compatible,
48
    make_hashable,
49 50
    type_name,
    unwrap,
51
)
52

53
__all__ = []
54

55 56 57 58
# For each traced function, we set `max_traced_program_count` = 10 to consider caching performance.
# Once exceeding the threshold, we will raise warning to users to make sure the conversion is as expected.
MAX_TRACED_PROGRAM_COUNT = 10

59

60 61 62 63 64 65 66 67 68 69
def synchronized(func):
    func.__lock__ = threading.Lock()

    def lock_func(*args, **kwargs):
        with func.__lock__:
            return func(*args, **kwargs)

    return lock_func


70
class FunctionCache:
71 72 73 74 75
    """
    Caches the transformed functions to avoid redundant conversions of the same function.
    """

    def __init__(self):
76
        # Caches the converted static functions. {dygraph_func: static_func}
X
xiongkun 已提交
77
        self._converted_static_func_caches = weakref.WeakKeyDictionary()
78 79 80
        # Caches the converted ast node for same source code. {source_code: ast_root}
        self._code_to_ast_caches = dict()
        self._dygraph_to_static = DygraphToStaticAst()
81

82 83 84 85 86 87
    def convert_with_cache(self, func):
        """
        Returns the cached static function or converts it when first encounters the function.
        """
        # If hit cache, return it directly.
        static_func = self._converted_static_func_caches.get(func, None)
88 89

        if static_func is None:
90 91
            static_func = self._convert(func)
            self._converted_static_func_caches[func] = static_func
92 93 94

        return static_func

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    def _convert(self, func):
        """
        Converts dygraph function into static function. For two functions with same dedent code,
        the second function will reuse the transformed ast node of previous one.

        For example:
            # A.py
            def foo(x, y):
                z = x + y
                return z

            # B.py
            def foo(x, y):
                z = x + y
                return z

        If the conversion of A.foo happens after B.foo, it will reuse the transformed ast node of B.foo
        to speed up the conversion.
        """
        # Note: In Python2, it will raise OSError when inspect function
        # with decorator directly and function.__wrapped__ holds the actual function.
116
        func = unwrap(func)
117
        source_code = func_to_source_code(func)
118 119 120 121 122

        # TODO(liym27):
        #  Consider this case: source_code in self._code_to_ast_caches,
        #  but actually they are methods in different classes.
        #  Maybe use (__class__, source_code) as key
123 124 125 126
        if source_code in self._code_to_ast_caches:
            root_wrapper = self._code_to_ast_caches[source_code]
        else:
            root = gast.parse(source_code)
127
            root = attach_origin_info(root, func)
128 129
            root_wrapper = self._dygraph_to_static.get_static_ast(root)
            self._code_to_ast_caches[source_code] = root_wrapper
130

131 132
        # Get static function from AST
        static_func, file_name = ast_to_func(root_wrapper.node, func)
133 134

        create_and_update_origin_info_map(root_wrapper.node, static_func)
135
        return static_func
136 137

    def exist(self, func):
138
        return func in self._converted_static_func_caches
139 140


141 142 143 144
_CACHE_LOCK = threading.Lock()
_FUNCTION_CACHE = FunctionCache()


145
def convert_to_static(function):
146
    """
147
    Transforms function of dygraph into static function using the cache mechanism.
148 149 150

    Args:
        function(callable): The function with dygraph layers that will be converted into static layers.
151
    """
152 153
    if getattr(function, ALREADY_D2S, None):
        return function
154
    with _CACHE_LOCK:
155
        static_func = _FUNCTION_CACHE.convert_with_cache(function)
156
        setattr(static_func, ALREADY_D2S, True)
157 158 159
        return static_func


160
class CacheKey:
161 162 163
    """
    Cached key for ProgramCache.
    """
164

165
    __slots__ = [
166 167 168 169 170 171
        'function_spec',
        'input_args_with_spec',
        'input_kwargs_with_spec',
        'class_instance',
        'kwargs',
        '_spec_names_id',
172
    ]
173

174 175 176 177 178 179 180 181
    def __init__(
        self,
        function_spec,
        input_args_with_spec,
        input_kwargs_with_spec,
        class_instance,
        **kwargs
    ):
182 183
        """
        Initializes a cache key.
184

185 186
        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
187 188
            input_args_with_spec(list[InputSpec]): actual input args with some arguments replaced by InputSpec.
            input_kwargs_with_spec(list[{string:InputSpec}]): actual input kwargs with some arguments replaced by InputSpec.
189
            class_instance(object): a instance of class `Layer`.
190
            **kwargs(dict): manage other arguments used for better scalability
191
        """
192
        self.function_spec = function_spec
193 194
        self.input_args_with_spec = input_args_with_spec
        self.input_kwargs_with_spec = input_kwargs_with_spec
195
        self.class_instance = class_instance
196 197
        # NOTE: `kwargs` is usually not considered as basic member for `__hash__`
        self.kwargs = kwargs
198 199 200
        self._spec_names_id = _hash_spec_names(
            input_args_with_spec, input_kwargs_with_spec
        )
201 202 203

    @classmethod
    def from_func_and_args(cls, function_spec, args, kwargs, class_instance):
204
        """
205 206 207 208 209 210 211 212 213 214 215
        Generated a CacheKey instance by given inputs.

        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
            args(tuple): tuple of actual inputs arguments.
            kwargs(dict): dict of actual inputs keyword arguments.
            class_instance(object): a instance of class `Layer`.
        """
        # 1. filter `self` in args
        if args and isinstance(args[0], layers.Layer):
            args = args[1:]
216
        # 2. convert tensor and numpy array into InputSpec
217
        _args, _kwargs = function_spec.unified_args_and_kwargs(args, kwargs)
218 219 220 221
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = function_spec.args_to_input_spec(_args, _kwargs)
222 223

        # 3. check whether hit the cache or build a new program for the input arguments
224 225 226 227 228 229
        return CacheKey(
            function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            class_instance,
        )
230 231 232

    def __hash__(self):
        error_msg = "Arguments to a `@paddle.jit.to_static` must be a hashable Python objects (or nested structures of these types)."
233
        with_hook = self.kwargs.get("with_hook", False)
234
        is_train = self.kwargs.get("is_train", False)
235 236 237 238 239 240 241 242 243 244 245
        return hash(
            (
                id(self.function_spec),
                make_hashable(self.input_args_with_spec, error_msg),
                make_hashable(self.input_kwargs_with_spec, error_msg),
                self._spec_names_id,
                self.class_instance,
                with_hook,
                is_train,
            )
        )
246 247 248 249 250 251 252 253

    def __eq__(self, other):
        return (type(self) is type(other)) and hash(self) == hash(other)

    def __neq__(self, other):
        return not self == other

    def __repr__(self):
254
        return "id(function_spec): {}, input_args_with_spec: {}, input_kwargs_with_spec: {}, class_instance: {}".format(
255 256 257 258 259
            id(self.function_spec),
            self.input_args_with_spec,
            self.input_kwargs_with_spec,
            self.class_instance,
        )
260 261 262 263 264 265 266 267 268


def unwrap_decorators(func):
    """
    Unwraps a decorated function and returns the decorator list and inner target.
    """
    decorators = []
    cur = func
    while True:
269
        if isinstance(cur, StaticFunction):
270 271 272 273 274
            decorators.append(cur)
            # Note: if `cur` is a method, keep it as bound method of class.
            instance = cur._class_instance
            if instance is not None:
                cur = cur.dygraph_function.__get__(instance)
275
            else:
276 277 278 279
                cur = cur.dygraph_function
        else:
            break
    return decorators, cur
280

281

282
class StaticFunction:
283 284 285 286 287
    """
    Wrapper class to Manage program conversion of decorated function.

    """

288
    def __init__(self, function, input_spec=None, **kwargs):
289
        """
290
        Initializes a `StaticFunction`.
291 292 293 294

        Args:
            function(callable): A function or method that will be converted into static program.
            input_spec(list[InputSpec]): list of InputSpec to specify the `shape/dtype/name` information for each input argument, default None.
295
            **kwargs(dict): other arguments like `build_strategy` et.al.
296 297
        """
        # save the instance `self` while decorating a method of class.
298

299 300 301
        if inspect.ismethod(function):
            self._dygraph_function = getattr(function, '__func__')
            self._class_instance = getattr(function, '__self__')
302

303 304 305
            if not hasattr(self._class_instance, '_original_funcs'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
306 307
                    "please ensure the class inherits from nn.Layer"
                )
308
            self._class_instance._original_funcs[
309 310
                function.__name__
            ] = self._dygraph_function
311 312 313 314 315 316 317
        else:
            self._dygraph_function = function
            self._class_instance = None

        self._input_spec = input_spec
        self._function_spec = FunctionSpec(function, input_spec)
        self._program_cache = ProgramCache()
318
        self._descriptor_cache = weakref.WeakKeyDictionary()
319
        # Note: Hold a reference to ProgramTranslator for switching `enable_to_static`.
320
        self._program_trans = ProgramTranslator()
321
        self._kwargs = kwargs
322
        self._training = True
323 324
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
325

326 327 328 329 330 331 332
        self._property = kwargs.get("property", False)

    @property
    def is_property(self):
        # whether is class proproty to be exported.
        return self._property

333
    def train(self):
334 335
        if (
            isinstance(self._class_instance, layers.Layer)
336
            and self._class_instance.training is False
337
        ):
338 339 340
            raise RuntimeError(
                "Failed to switch train mode. {} is a Layer's method, "
                "please use Layer.train() to switch train mode.".format(
341 342 343
                    self.dygraph_function
                )
            )
344 345 346
        self._training = True

    def eval(self):
347 348
        if (
            isinstance(self._class_instance, layers.Layer)
349
            and self._class_instance.training is True
350
        ):
351 352 353
            raise RuntimeError(
                "Failed to switch eval mode. {} is a Layer's method, "
                "please use Layer.eval() to switch eval mode.".format(
354 355 356
                    self.dygraph_function
                )
            )
357
        self._training = False
358 359 360 361 362 363

    def __get__(self, instance, owner):
        """
        Overrides this method to parse the class instance and call bound method correctly.

        For example:
364

365 366 367 368
            '''
            class Net(Layer):
                def __init__(self):
                    pass
369

370 371 372 373 374 375 376
                @paddle.jit.to_static
                def forward(self, x, y):
                    return x + y

            net = Net()
            out = net(x, y)
            '''
377

378 379
        In above case, `net(x, y)` will call `net.forward(x, y)` firstly that is a bound method
        of `Net` instance. After decorated by `@paddle.jit.to_static`, it will firstly to call `__get__`
380
        to parse the class instance correctly instead of the `StaticFunction` instance.
381
        """
382 383 384
        if instance not in self._descriptor_cache:
            if instance is None:
                return self
385
            # Note(Aurelius84): To construct new instance of StaticFunction when we
386 387 388 389 390 391 392 393
            # first encouter the bound function of layer and cache it.
            new_static_layer = self._clone()
            new_static_layer._class_instance = instance
            self._descriptor_cache[instance] = new_static_layer

        return self._descriptor_cache[instance]

    def _clone(self):
394 395 396
        return self.__class__(
            self._dygraph_function, self._input_spec, **self._kwargs
        )
397 398

    def __call__(self, *args, **kwargs):
399
        """
400 401 402 403
        Supports to call the returned instance with input `args` and `kwargs` directly.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
404
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
405 406 407

        Return:
            Outputs of decorated function.
408
        """
409 410
        if self._property:
            return self._call_dygraph_function(*args, **kwargs)
411

412
        # 1. call dygraph function directly if not enable `declarative`
413
        if not self._program_trans.enable_to_static:
414 415 416 417
            # NOTE(liym27):
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**. StaticFunction.__call__ will run many times, it is appropriate to
            # display this warning message only once.
418
            logging_utils.warn(
419 420
                "The decorator '@paddle.jit.to_static' does NOT work when setting ProgramTranslator.enable to False. "
                "We will just return dygraph output. If you would like to get static graph output, please call API "
421 422
                "ProgramTranslator.enable(True)"
            )
423 424
            return self._call_dygraph_function(*args, **kwargs)

J
Jiabin Yang 已提交
425
        if not _non_static_mode():
426 427
            raise RuntimeError(
                "Failed to run the callable object {} decorated by '@paddle.jit.to_static', "
428
                "because it is NOT in dynamic mode. Please disable the static graph mode to enter dynamic mode with the "
429
                "following API: paddle.disable_static().".format(
430 431 432
                    self.dygraph_function
                )
            )
433

434 435
        # 2. trace ops from dygraph layers and cache the generated program.
        args, kwargs = self._function_spec.unified_args_and_kwargs(args, kwargs)
436

437 438
        try:
            concrete_program, partial_program_layer = self.get_concrete_program(
439 440
                *args, **kwargs, is_train=self._is_train_mode()
            )
441 442 443
            # 3. synchronize self.training attribute.
            if isinstance(self._class_instance, layers.Layer):
                partial_program_layer.training = self._class_instance.training
444 445
            else:
                partial_program_layer.training = self._training
446

447 448 449
            partial_program_layer._cuda_graph_capture_mode = (
                self._cuda_graph_capture_mode
            )
450 451
            partial_program_layer._cuda_graph_pool_id = self._cuda_graph_pool_id

452
            # 4. return outputs.
453 454 455 456 457 458 459
            try:
                return partial_program_layer(args)
            except Exception as e:
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                    raise
460
        except Exception as e:
461
            error_data = getattr(e, error.ERROR_DATA, None)
462
            if error_data:
463
                error_data.raise_new_exception()
464
            else:
465 466
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
467 468
                    " if you can't handle this {} yourself.".format(type(e))
                )
469
                raise e
470

471 472
    def _is_train_mode(self):
        if self._class_instance is not None:
473 474 475
            if not hasattr(self._class_instance, 'training'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
476 477
                    "please ensure the class inherits from nn.Layer"
                )
478 479 480 481
            return self._class_instance.training
        else:
            return self._training

482 483 484 485 486 487
    def _call_dygraph_function(self, *args, **kwargs):
        """
        Calls dygraph function directly and returns the outputs.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
488
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
489 490 491 492 493 494

        Return:
            Outputs of dygraph function.
        """
        if self._class_instance is not None:
            dygraph_function = self._dygraph_function.__get__(
495 496
                self._class_instance
            )
497 498 499 500 501
        else:
            dygraph_function = self._dygraph_function

        return dygraph_function(*args, **kwargs)

502 503 504 505 506 507 508 509 510
    def _raise_when_property(self):
        """raise RuntimeError when property=True

        Raises:
            RuntimeError: can not call this func when property=True
        """
        if self.is_property:
            raise RuntimeError("Can not call the func when property=True.")

511 512 513 514 515 516 517 518 519 520 521
    def get_concrete_program(self, *args, **kwargs):
        """
        Returns traced concrete program and inner executable partial layer.

        Args:
            *args(tuple): input arguments values or InputSpec
            **kwargs(dict) : input kwargs values.

        Returns:
            Traced ConcreteProgram and executable translated Layer.
        """
522
        self._raise_when_property()
523

524
        with_hook = kwargs.get("with_hook", False)
525
        is_train = kwargs.get("is_train", True)
526 527 528 529
        if "is_train" in kwargs:
            kwargs.pop("is_train")
        if "with_hook" in kwargs:
            kwargs.pop("with_hook")
530 531
        # 1. unify args/kwargs and replace Tensor with InputSpec
        if len(args) != len(self._function_spec.args_name):
532
            args, kwargs = self._function_spec.unified_args_and_kwargs(
533 534 535 536 537 538
                args, kwargs
            )
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = self._function_spec.args_to_input_spec(args, kwargs)
539 540

        # 2. generate cache key
541 542 543 544 545 546 547 548 549
        cache_key = CacheKey(
            self._function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            self._class_instance,
            **self._kwargs,
            with_hook=with_hook,
            is_train=is_train
        )
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

        # 3. check whether hit the cache or build a new program for the input arguments
        concrete_program, partial_program_layer = self._program_cache[cache_key]
        return concrete_program, partial_program_layer

    def get_traced_count(self):
        """
        Returns the number of traced programs for the decorated function.
        """
        return len(self._program_cache)

    @property
    def code(self):
        """
        Returns the source code of transformed static function for debugging.
        """
        static_func = convert_to_static(self._dygraph_function)
        source_code = func_to_source_code(static_func)
        return source_code

    @property
    def dygraph_function(self):
        """
        Returns the original decorated function.
        """
        return self._dygraph_function

    @property
    def concrete_program(self):
        """
        Returns recent ConcreteProgram instance of decorated function.
A
Aurelius84 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593

        Examples:
            .. code-block:: python

                import paddle
                from paddle.jit import to_static
                from paddle.static import InputSpec

                paddle.disable_static()

                def foo(x, y):
                    z = x + y
                    return z
594

A
Aurelius84 已提交
595 596 597 598 599 600 601 602
                # usage 1:
                decorated_foo = to_static(foo, input_spec=[InputSpec([10], name='x'), InputSpec([10], name='y')])
                print(decorated_foo.concrete_program)

                # usage 2:
                decorated_foo = to_static(foo)
                out_foo = decorated_foo(paddle.rand([10]), paddle.rand([10]))
                print(decorated_foo.concrete_program)
603
        """
604 605
        return self.concrete_program_specify_input_spec(input_spec=None)

606 607 608
    def concrete_program_specify_input_spec(
        self, input_spec=None, with_hook=False
    ):
609 610 611
        """
        Returns recent ConcreteProgram instance of decorated function while
        specifying input_spec. If the self._function_spec already has
612
        input_spec, it will check the compatibility of input input_spec and
613 614 615 616 617 618 619
        the self._function_spec.input_spec. If input input_spec=None, then
        this method uses self._function_spec.input_spec

        args:
            input_spec (list[InputSpec], optional): Describes the input of
                the translate function.
        """
620
        self._raise_when_property()
621 622 623 624 625
        # if specific the `input_spec`, the length of program_cache will always 1,
        # else, return the last one.
        cached_program_len = len(self._program_cache)
        # If specific `input_spec`, apply convertion from dygraph layers into static Program.
        if cached_program_len == 0:
C
Chen Weihang 已提交
626 627 628
            desired_input_spec = input_spec
            if self._function_spec.input_spec is not None:
                if input_spec is not None and not input_specs_compatible(
629 630
                    flatten(input_spec), flatten(self._function_spec.input_spec)
                ):
631
                    raise ValueError(
632 633 634 635
                        "The `input_spec`: {} used to construct concrete_program is conflict with the `input_spec`: {} in `@paddle.jit.to_static`".format(
                            input_spec, self._function_spec.input_spec
                        )
                    )
C
Chen Weihang 已提交
636 637 638
                # NOTE(chenweihang): we should always translated program based on the `input_spec`
                # decorated on forward if it is valid
                desired_input_spec = self._function_spec.input_spec
639 640
                if input_spec is not None:
                    logging_utils.warn(
641 642 643 644
                        "\n\nYou have specified `input_spec` both in function definition (higher priority) and `paddle.jit.save` (will be ignored.)\n\n\t Using: {}\n\n\t Ignore: {}\n".format(
                            desired_input_spec, input_spec
                        )
                    )
645

646
            has_input_spec = desired_input_spec is not None
A
Aurelius84 已提交
647
            if has_input_spec:
C
Chen Weihang 已提交
648
                concrete_program, _ = self.get_concrete_program(
649 650
                    *desired_input_spec,
                    with_hook=with_hook,
651 652
                    is_train=self._is_train_mode()
                )
653
                return concrete_program
654
            else:
A
Aurelius84 已提交
655
                raise ValueError(
656 657 658 659
                    "No valid transformed program for {}.\n\t    Please specific `input_spec` in `@paddle.jit.to_static` or feed input tensor to call the decorated function at once.\n".format(
                        self._function_spec
                    )
                )
660 661 662 663 664 665
        elif with_hook:
            cache_key = self._program_cache._recent_cache_key
            cache_key.kwargs["with_hook"] = True
            concrete_program, _ = self._program_cache[cache_key]
            return concrete_program

666 667
        # If more than one programs have been cached, return the recent converted program by default.
        elif cached_program_len > 1:
668
            logging_utils.warn(
669 670 671 672
                "Current {} has more than one cached programs: {}, the last traced progam will be return by default.".format(
                    self._function_spec, cached_program_len
                )
            )
673

674 675 676 677
        cache_key, (
            concrete_program,
            partial_layer,
        ) = self._program_cache.last()
678
        return concrete_program
679

680 681 682
    def rollback(self):
        """
        Rollback into original dygraph functions for current class instance.
683

684 685 686 687 688 689 690 691 692 693
        Returns:
            Function or Method

        Example::
            .. code-block:: python

                import paddle

                class Net(paddle.nn.Layer):
                    def __init__(self):
694
                        super().__init__()
695 696 697 698 699 700 701 702 703

                    def forward(self, x, flag=True):
                        if flag:
                            out = x + 1
                        else:
                            out = x - 1
                        return out

                x = paddle.randn([10, 1], 'float32')
704
                net = paddle.jit.to_static(Net())  # convert into static graph mode
705
                out = net(x)
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
                net.forward.rollback()  # rollback into dygraph mode
                out = net(x)
        """

        def rollback_impl(class_instance):
            for name, func in class_instance._original_funcs.items():
                setattr(class_instance, name, func.__get__(class_instance))

            for sublayer in class_instance.sublayers(include_self=False):
                rollback_impl(sublayer)

        if self._class_instance is None:
            return self._dygraph_function

        # only rollback sub-functions on path of top _dygraph_function
        func_name = self._dygraph_function.__name__
723 724 725 726 727
        assert (
            func_name in self._class_instance._original_funcs
        ), "Not Found function '{}' in class '{}'.".format(
            func_name, self._class_instance.__name__
        )
728
        func = self._class_instance._original_funcs[func_name]
729 730 731
        setattr(
            self._class_instance, func_name, func.__get__(self._class_instance)
        )
732 733 734 735 736 737

        for sublayer in self._class_instance.sublayers(include_self=False):
            rollback_impl(sublayer)

        return getattr(self._class_instance, func_name)

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    def __deepcopy__(self, memo):
        """
        Customized behavior for copy.deepcopy, return original decorated function instead
        of a new StaticFunction Object. StaticFunction itself is not copyable becuase it's
        associated with class_instance.

        We add __deepcopy__ here only for the following usage:

        Example::
            .. code-block:: python

                import copy
                import paddle

                class Net(paddle.nn.Layer):
                    def __init__(self):
754
                        super().__init__()
755 756 757 758 759 760 761 762 763

                    def forward(self, x, flag=True):
                        if flag:
                            out = x + 1
                        else:
                            out = x - 1
                        return out

                x = paddle.randn([10, 1], 'float32')
764
                net = paddle.jit.to_static(Net())  # convert into static graph mode
765 766

                copy_net = copy.deepcopy(net)      # deepcopy a new net without @to_static
767

768 769 770 771 772 773
        Please attention that original 'net' will unwrap @to_static and rollback into simple Layer.
        """
        if self._class_instance is not None:
            net_name = type(self._class_instance).__name__
            logging_utils.log(
                level=-1,
774 775 776 777 778
                msg="Not recommend to deepcopy '{}' decorated with @to_static, it has side effect that will"
                " rollback into original state before @to_static. Please deepcopy '{}' before applying @to_static.".format(
                    net_name, net_name
                ),
            )
779
            self.rollback()
780 781 782
            return self._dygraph_function.__get__(
                memo[id(self._class_instance)]
            )
783 784 785
        else:
            return self._dygraph_function

786 787 788 789 790
    @property
    def inputs(self):
        """
        Returns input tensors of recent converted static program.
        """
791
        self._raise_when_property()
792 793
        concrete_program = self.concrete_program
        inputs = [
794 795
            var
            for var in flatten(concrete_program.inputs)
796 797 798
            if isinstance(var, framework.Variable)
        ]
        return inputs
799

800
    @property
801 802 803 804
    def outputs(self):
        """
        Returns output tensors of recent converted static program.
        """
805
        self._raise_when_property()
806 807
        concrete_program = self.concrete_program
        outputs = [
808 809
            var
            for var in flatten(concrete_program.outputs)
810 811 812 813
            if isinstance(var, framework.Variable)
        ]

        return outputs
814

815
    @property
816 817 818 819
    def main_program(self):
        """
        Returns recent converted static main program.
        """
820
        self._raise_when_property()
821 822 823
        concrete_program = self.concrete_program
        main_program = concrete_program.main_program
        return main_program
824

825 826 827
    @property
    def program_cache(self):
        return self._program_cache
828

829 830 831
    @property
    def function_spec(self):
        return self._function_spec
832 833


834 835 836 837 838 839 840 841 842 843
def _verify_init_in_dynamic_mode(class_instance):
    """
    Verifies the instance is initialized in dynamic mode.
    """
    if isinstance(class_instance, layers.Layer):
        if not class_instance._init_in_dynamic_mode:
            raise RuntimeError(
                " `paddle.jit.to_static` is only available in dynamic mode. Please call `paddle.disable_static()` before "
                "initializing your Layer class `{}` . Because parameters of Layer class should be initialized firstly "
                "in dynamic mode while applying transformation.".format(
844 845 846
                    class_instance
                )
            )
847 848


849
class HookHelper:
850 851 852 853 854 855 856 857 858
    """
    Only For converting pre/post hooks operation in outermost layer while jit.save.
    Because hooks in sublayer have been processed automatically.
    """

    def __init__(self, func, class_instance, with_hook=False):
        self.func = func
        self.class_instance = class_instance
        self.with_hook = with_hook
859 860 861 862 863
        self.need_apply_hook = (
            with_hook
            and isinstance(self.class_instance, layers.Layer)
            and getattr(func, "__name__") == "forward"
        )
864 865 866 867 868

    def apply_pre_hooks(self, inputs):
        """
        Apply _forward_pre_hooks from outermost layer
        """
869 870
        if not self.need_apply_hook:
            return inputs
871 872 873 874 875 876

        inputs = inputs[1:]
        for forward_pre_hook in self.class_instance._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self.class_instance, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
877
                    hook_result = (hook_result,)
878 879 880 881 882 883 884 885
                inputs = hook_result

        return [self.class_instance] + list(inputs)

    def apply_post_hooks(self, inputs, outputs):
        """
        Apply _forward_post_hooks from outermost layer
        """
886 887
        if not self.need_apply_hook:
            return outputs
888 889

        inputs = inputs[1:]
890 891 892 893 894 895
        for (
            forward_post_hook
        ) in self.class_instance._forward_post_hooks.values():
            hook_result = forward_post_hook(
                self.class_instance, inputs, outputs
            )
896 897 898 899 900 901 902
            if hook_result is not None:
                outputs = hook_result

        inputs.insert(0, self.class_instance)
        return outputs


903
class ConcreteProgram:
904 905

    __slots__ = [
906 907 908 909 910 911 912
        'inputs',
        'outputs',
        'main_program',
        "startup_program",
        "parameters",
        "function",
        'kwargs',
913 914
    ]

915 916 917 918 919 920 921 922 923 924
    def __init__(
        self,
        inputs,
        outputs,
        parameters,
        function,
        main_program,
        startup_program=None,
        **kwargs
    ):
925 926 927
        self.inputs = inputs
        self.outputs = outputs
        self.main_program = main_program
928
        self.startup_program = startup_program
929
        self.parameters = parameters
930
        self.function = function
931
        self.kwargs = kwargs
932 933 934

    @staticmethod
    @switch_to_static_graph
935 936 937
    def from_func_spec(
        func_spec, input_spec, input_kwargs_spec, class_instance, **kwargs
    ):
938
        """
939 940
        Builds the main_program with specialized inputs and returns outputs
        of program as fetch_list.
941 942 943

        Args:
            func_spec(FunctionSpec): A FunctionSpec instance for decorated function.
944
            input_spec(list[InputSpec]):
945
        """
946 947 948
        # verify the instance is initialized in imperative mode.
        _verify_init_in_dynamic_mode(class_instance)

949
        # Transforms dygraph function into static function and caches it.
950
        dygraph_function = func_spec.dygraph_function
951
        static_func = convert_to_static(dygraph_function)
952
        # apply pre\post hook for outermost layer
953 954 955
        hook_helper = HookHelper(
            dygraph_function, class_instance, kwargs.get("with_hook", False)
        )
956

957 958
        main_program, startup_program = framework.Program(), framework.Program()
        # Note: The random seed should be synchronized into cached program
959
        # if set in `fluid.dygraph_guard` because some ops rely on it, such as
960
        # `fluid.layers.dropout`.
961
        main_program.random_seed = framework.default_main_program().random_seed
962 963 964
        startup_program.random_seed = (
            framework.default_startup_program().random_seed
        )
965

966
        from paddle.fluid.dygraph.base import _switch_declarative_mode_guard_
967

968
        with framework.program_guard(main_program, startup_program):
969 970
            with _switch_declarative_mode_guard_(is_declarative=True):
                # 1. Adds `fluid.data` layers for input if needed
971
                static_inputs = func_spec.to_static_inputs_with_spec(
972 973
                    input_spec, main_program
                )
974
                _kwargs = func_spec.to_static_inputs_with_spec(
975 976
                    input_kwargs_spec, main_program
                )
977
                if class_instance:
978 979 980
                    static_inputs = tuple(
                        [class_instance] + list(static_inputs)
                    )
981

982
                # 2. Builds program only once and returns the output Variables.
983 984 985
                with param_guard(
                    get_parameters(class_instance, False)
                ), param_guard(get_buffers(class_instance, False)):
986
                    try:
987 988
                        # only for jit.save, do nothing while train and eval process
                        inputs = hook_helper.apply_pre_hooks(static_inputs)
989 990
                        if _kwargs:
                            outputs = static_func(*inputs, **_kwargs)
991 992
                        else:
                            outputs = static_func(*inputs)
993
                        outputs = hook_helper.apply_post_hooks(inputs, outputs)
994 995
                    except BaseException as e:
                        # NOTE: If e is raised in compile time, e should be attached to ERROR_DATA here.
996
                        error.attach_error_data(e)
997 998 999
                        error_data = getattr(e, error.ERROR_DATA, None)
                        if error_data:
                            error_data.raise_new_exception()
1000 1001
                        raise

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
                from paddle.jit.dy2static.program_translator import (
                    ProgramTranslator,
                )

                # 3. Gets all ParamBases and buffered VarBases in the function
                all_parameters_and_buffers = (
                    ProgramTranslator.get_instance()._params_recorder.pop(
                        main_program
                    )
                )

1013
                if outputs is not None:
1014 1015 1016 1017
                    need_wrap_into_list = (
                        not isinstance(outputs, (tuple, list))
                        or len(outputs) == 1
                    )
1018 1019
                    if need_wrap_into_list:
                        outputs = [outputs]
1020

1021 1022
        main_program = update_op_callstack_with_origin_info(main_program)

1023 1024 1025 1026 1027 1028 1029 1030 1031
        return ConcreteProgram(
            inputs=static_inputs,
            outputs=outputs,
            parameters=all_parameters_and_buffers,
            function=dygraph_function,
            main_program=main_program,
            startup_program=startup_program,
            **kwargs
        )
1032 1033


1034 1035 1036 1037 1038 1039
def _extract_indeed_params_buffers(class_instance):
    """
    To filter not initialzed buffers.
    """
    params = list(get_parameters(class_instance).values())
    buffers = list(get_buffers(class_instance).values())
1040
    buffers = [buffer for buffer in buffers if len(buffer.shape) != 0]
1041 1042 1043 1044

    return params + buffers


1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
class ParametersRecorder:
    def __init__(self):
        self.params_dict = {}

    @synchronized
    def add(self, program, param):
        """use the default_program as key, append param the parameter list."""
        key = self._program_hash(program)
        if key not in self.params_dict:
            self.params_dict[key] = set()
        params = self.params_dict[key]
        params.add(param)

    def pop(self, program):
        params = self.params_dict.get(self._program_hash(program))
        if params is None:
            return []
        del self.params_dict[self._program_hash(program)]
        return list(params)

    def _program_hash(self, program):
        """
        because program is not deleted while calling from_func_spec.
        so it's ok to use id(program)
        """
        return id(program)


1073
class ProgramCache:
1074 1075 1076
    """
    Wrapper class for the program functions defined by dygraph function.
    """
1077

1078
    def __init__(self):
1079
        # {hash_id : (concrete_program, partial_layer)}
1080
        self._caches = collections.OrderedDict()
1081
        # trace mostly recent used program
1082
        self._recent_key = None
1083
        self._recent_cache_key = None
1084

1085 1086 1087
    def _build_once(self, cache_key):
        concrete_program = ConcreteProgram.from_func_spec(
            func_spec=cache_key.function_spec,
1088 1089
            input_spec=cache_key.input_args_with_spec,
            input_kwargs_spec=cache_key.input_kwargs_with_spec,
1090
            class_instance=cache_key.class_instance,
1091 1092
            **cache_key.kwargs
        )
1093
        return concrete_program, partial_program_from(concrete_program)
1094

1095
    def __getitem__(self, item):
1096
        if not isinstance(item, CacheKey):
1097 1098 1099 1100
            raise ValueError(
                'type(item) should be CacheKey, but received %s'
                % type_name(item)
            )
1101
        item_id = hash(item)
1102
        self._recent_cache_key = item
1103
        self._recent_key = item_id
1104 1105
        if item_id not in self._caches:
            self._caches[item_id] = self._build_once(item)
1106 1107 1108
            # Note: raise warnings if number of traced program is more than `max_tracing_count`
            current_tracing_count = len(self._caches)
            if current_tracing_count > MAX_TRACED_PROGRAM_COUNT:
1109
                logging_utils.warn(
1110
                    "Current traced program number: {} > `max_tracing_count`:{}. Too much cached programs will bring expensive overhead. "
1111 1112 1113 1114
                    "The reason may be: (1) passing tensors with different shapes, (2) passing python objects instead of tensors.".format(
                        current_tracing_count, MAX_TRACED_PROGRAM_COUNT
                    )
                )
1115

1116
        return self._caches[item_id]
1117

1118
    def get_program(self, item):
1119
        if not isinstance(item, CacheKey):
1120
            raise ValueError(
1121 1122 1123
                "Input item's type should be FunctionSpec, but received %s"
                % type_name(item)
            )
1124 1125
        item_id = hash(item)
        if item_id not in self._caches:
1126
            raise RuntimeError(
1127
                "Failed to find program for input item, please decorate input function by `@paddle.jit.to_static`."
1128
            )
1129
        return self._caches[item_id]
1130

1131
    def last(self):
1132 1133 1134
        assert (
            len(self._caches) >= 1
        ), "No valid cached program in ProgramCache."
1135 1136
        assert self._recent_key is not None
        return self._recent_key, self._caches[self._recent_key]
1137

1138 1139 1140 1141
    def __len__(self):
        return len(self._caches)

    def concrete_programs(self):
1142
        return [cp for key, (cp, _) in self._caches.items()]
1143

1144

1145
class ProgramTranslator:
1146
    """
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    Class to translate dygraph function into static graph function. The object
    of this class is a singleton.

    Args:
        None.

    Returns:
        ProgramTranslator: the singleton object.

    Examples:
        .. code-block:: python

1159
            import paddle
1160

1161 1162 1163
            # Two methods get same object because ProgramTranslator is a singleton
            paddle.jit.ProgramTranslator()
            paddle.jit.ProgramTranslator.get_instance()
1164

1165 1166
    """

1167
    _singleton_lock = threading.Lock()
1168 1169 1170 1171 1172 1173
    _instance = None

    @synchronized
    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = object.__new__(cls, *args, **kwargs)
1174
            cls._instance._initialized = False
1175 1176 1177 1178 1179
        return cls._instance

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
1180 1181
            with cls._singleton_lock:
                cls._instance = cls()
1182 1183 1184 1185 1186
        return cls._instance

    @classmethod
    def reset(cls):
        if cls._instance is not None:
1187
            cls._instance._initialized = False
1188 1189
            cls._instance.__init__()

1190
    def __init__(self):
1191
        # To make sure that calls __init__ only once.
1192
        if self._initialized:
1193
            return
1194 1195
        self._initialized = True
        self._program_cache = ProgramCache()
1196
        self._params_recorder = ParametersRecorder()
1197
        self.enable_to_static = True
1198

1199
    def enable(self, enable_to_static):
1200
        """
1201
        Enable or disable the converting from imperative to static graph by
1202 1203 1204
        ProgramTranslator globally.

        Args:
1205
            enable_to_static (bool): True or False to enable or disable converting to static.
1206 1207 1208 1209 1210 1211 1212

        Returns:
            None.

        Examples:
            .. code-block:: python

1213
                import paddle
1214 1215


1216 1217 1218 1219 1220 1221 1222
                @paddle.jit.to_static
                def func(x):
                    if paddle.mean(x) > 0:
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v
1223

1224 1225 1226 1227 1228 1229

                prog_trans = paddle.jit.ProgramTranslator()
                prog_trans.enable(False)

                x = paddle.ones([1, 2])
                # ProgramTranslator is disabled so the func is run in dygraph
1230
                print(func(x))  # [[0. 0.]]
L
liym27 已提交
1231

1232
        """
1233 1234 1235 1236 1237 1238
        check_type(
            enable_to_static,
            "enable_to_static",
            bool,
            "ProgramTranslator.enable",
        )
1239
        self.enable_to_static = enable_to_static
1240

1241 1242
    def get_output(self, dygraph_func, *args, **kwargs):
        """
1243
        Returns the output dygraph Tensor for dygraph function. The dygraph
1244
        function will be translated into static graph function so the under
1245
        beneath numerical result will be calculated by static graph mode.
1246 1247 1248

        Args:
            dygraph_func (callable): the dygraph function.
1249 1250
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1251 1252

        Returns:
1253
            Tensor or tuple of Tensors: the dygraph Tensor containing digital result.
1254 1255 1256 1257

        Examples:
            .. code-block:: python

1258 1259
                import paddle

1260 1261

                def func(x):
1262
                    if paddle.mean(x) > 0:
1263 1264 1265 1266 1267 1268
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v


1269 1270 1271 1272
                prog_trans = paddle.jit.ProgramTranslator()

                x = paddle.ones([1, 2])
                x_v = prog_trans.get_output(func, x)
1273
                print(x_v)  # [[0. 0.]]
1274

1275
        """
1276 1277 1278
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_output"
1279

1280
        if not self.enable_to_static:
1281 1282
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**.
1283
            logging_utils.warn(
1284 1285 1286 1287
                "The ProgramTranslator.get_output doesn't work when setting ProgramTranslator.enable to False. "
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1288
            return dygraph_func(*args, **kwargs)
1289
        try:
1290
            function_spec = FunctionSpec(dygraph_func)
1291
            cache_key = CacheKey.from_func_and_args(
1292 1293 1294 1295 1296
                function_spec,
                args,
                kwargs,
                getattr(dygraph_func, '__self__', None),
            )
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
            _, partial_program_layer = self._program_cache[cache_key]

            if args and isinstance(args[0], layers.Layer):
                # Synchronize self.training attribute.
                partial_program_layer.training = args[0].training
                args = args[1:]
            try:
                return partial_program_layer(args)
            except BaseException as e:
                # NOTE:
                # 1. If e is raised in compile time, e should have been attached to ERROR_DATA before;
                # 2. If e raised in runtime, e should be attached to ERROR_DATA here.
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                raise
1313
        except BaseException as e:
1314 1315 1316 1317 1318 1319
            error_data = getattr(e, error.ERROR_DATA, None)
            if error_data:
                error_data.raise_new_exception()
            else:
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
1320 1321
                    " if you can't handle this {} yourself.".format(type(e))
                )
1322
                raise e
1323 1324 1325

    def get_func(self, dygraph_func):
        """
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        Returns a callable function which converts imperative dygraph APIs of
        the input dygraph_func into declarative net-building APIs, which means
        it doesn't return immediate digital result as get_output does.
        Users should handle Program and Executor by themselves.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
            callable: converting imperative dygraph APIs into declarative
            net-building APIs.
1337 1338 1339 1340

        Examples:
            .. code-block:: python

1341 1342
                import paddle

1343 1344

                def func(x):
1345
                    if paddle.mean(x) > 0:
1346 1347 1348 1349 1350 1351
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v


1352
                prog_trans = paddle.jit.ProgramTranslator()
1353 1354 1355
                static_func = prog_trans.get_func(func)
                print(callable(static_func)) # True

1356
        """
1357 1358 1359
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_func"
1360

1361
        if not self.enable_to_static:
1362
            logging_utils.warn(
1363 1364 1365
                "The ProgramTranslator.get_func doesn't work when setting ProgramTranslator.enable to False. We will "
                "just return dygraph output. Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1366
            return dygraph_func
1367

1368
        static_func = convert_to_static(dygraph_func)
1369 1370
        return static_func

1371 1372
    def get_program(self, dygraph_func, *args, **kwargs):
        """
1373
        Returns the translated static program and input/output Tensors from
1374 1375 1376 1377
        dygraph function. The users can use the program to run by executor.

        Args:
            dygraph_func (callable): the dygraph function.
1378 1379
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1380 1381 1382

        Returns:
            tuple of (main_program, startup_program, inputs, outputs) whose
1383
            types are (Program, Program, list of Tensors, list of Tensors).
1384 1385
            main_program: the converted main program.
            startup_program: the converted startup program.
1386 1387
            inputs: list of input Tensors which need to be fed.
            outputs: list of output Tensors which users can fetch.
1388 1389 1390 1391

        Examples:
            .. code-block:: python

1392 1393
                import paddle

1394 1395

                def func(x):
1396
                    if paddle.mean(x) > 0:
1397 1398 1399 1400 1401 1402
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v


1403 1404
                prog_trans = paddle.jit.ProgramTranslator()
                x = paddle.ones([1, 2])
1405 1406
                main_prog, start_prog, inputs, outputs = prog_trans.get_program(func, x)
                print([i.name for i in inputs])
1407
                # [u'generated_tensor_0'] the feed input Tensor name representing x
1408
                print([o.name for o in outputs])
1409
                # [u'_generated_var_4'] the fetch output Tensor name representing x_v
1410

1411
        """
1412 1413 1414
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_program"
1415

1416
        if not self.enable_to_static:
1417
            logging_utils.warn(
1418 1419 1420 1421
                "The ProgramTranslator.get_program doesn't work when setting ProgramTranslator.enable to False."
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1422
            return dygraph_func(*args, **kwargs)
1423

1424
        function_spec = FunctionSpec(dygraph_func)
1425
        cache_key = CacheKey.from_func_and_args(
1426 1427
            function_spec, args, kwargs, getattr(dygraph_func, '__self__', None)
        )
1428 1429
        concrete_program, partial_program_layer = self._program_cache[cache_key]

1430 1431
        # Note: concrete_program hold all input/output infos include non-Variable
        input_vars = [
1432 1433
            var
            for var in concrete_program.inputs
1434 1435 1436
            if isinstance(var, framework.Variable)
        ]
        output_vars = [
1437 1438
            var
            for var in concrete_program.outputs
1439 1440 1441
            if isinstance(var, framework.Variable)
        ]

1442 1443 1444 1445 1446 1447
        return (
            concrete_program.main_program,
            concrete_program.startup_program,
            input_vars,
            output_vars,
        )
1448

1449 1450
    def get_code(self, dygraph_func):
        """
1451 1452 1453 1454 1455 1456
        Returns the translated static function string code from dygraph function.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
1457 1458 1459 1460 1461
            str: the string code of translated static function.

        Examples:
            .. code-block:: python

1462 1463 1464 1465 1466 1467 1468 1469 1470
                import paddle


                def func(x):
                    if paddle.mean(x) > 0:
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v
1471 1472


1473
                prog_trans = paddle.jit.ProgramTranslator()
1474

1475 1476
                code = prog_trans.get_code(func)
                print(type(code)) # <class 'str'>
1477

1478
        """
1479 1480 1481
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_code"
1482
        # Gets AST from dygraph function
1483 1484 1485

        unwrap_func = unwrap(dygraph_func)
        raw_code = inspect.getsource(unwrap_func)
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        code = textwrap.dedent(raw_code)
        root = gast.parse(code)

        # Transform AST
        dygraph_to_static = DygraphToStaticAst()
        root_wrapper = dygraph_to_static.get_static_ast(root)

        # Get source_code
        source_code = ast_to_source_code(root_wrapper.node)
        return source_code

1497
    def get_program_cache(self):
1498
        """
1499 1500 1501 1502 1503 1504 1505 1506 1507
        Returns the ProgramCache instance. This method is used by PaddlePaddle
        developers to manage program cache in ProgramTranslator. Normal users
        don't have to call this method.

        Returns:
            ProgramCache: ProgramCache instance of ProgramTranslator.

        Examples:
            .. code-block:: python
1508

1509
                import paddle
1510

1511
                prog_trans = paddle.jit.ProgramTranslator()
1512 1513
                prog_cache = prog_trans.get_program_cache()

1514
        """
1515
        return self._program_cache