program_translator.py 63.5 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import collections
16
import inspect
17 18
import textwrap
import threading
19
import warnings
20
import weakref
21

22
from paddle.fluid import core, framework
23
from paddle.fluid.data_feeder import check_type
24 25 26 27 28
from paddle.fluid.dygraph.base import (
    _switch_declarative_mode_guard_,
    param_guard,
    switch_to_static_graph,
)
29
from paddle.framework import in_dynamic_mode
30
from paddle.nn.layer import layers
31
from paddle.utils import flatten, gast
32 33 34 35 36 37 38 39 40

from . import error, logging_utils
from .ast_transformer import DygraphToStaticAst
from .function_spec import (
    FunctionSpec,
    _hash_spec_names,
    get_buffers,
    get_parameters,
)
41
from .origin_info import (
42 43 44 45
    attach_origin_info,
    create_and_update_origin_info_map,
    update_op_callstack_with_origin_info,
)
X
xiongkun 已提交
46
from .partial_program import PartialProgramLayerHook, partial_program_from
47
from .utils import (
48
    ALREADY_D2S,
49
    NO_SHAPE_VAR_TYPE,
50 51
    ast_to_func,
    ast_to_source_code,
52
    backend_guard,
53 54
    func_to_source_code,
    input_specs_compatible,
55
    is_paddle_func,
56
    make_hashable,
57
    prim_or_cinn_is_enabled,
58 59
    type_name,
    unwrap,
60
)
61

62
__all__ = []
63

64 65 66 67
# For each traced function, we set `max_traced_program_count` = 10 to consider caching performance.
# Once exceeding the threshold, we will raise warning to users to make sure the conversion is as expected.
MAX_TRACED_PROGRAM_COUNT = 10

68 69
CONVERSION_OPTIONS = "__jst_not_to_static"

70

71 72 73 74 75 76 77 78 79 80
def synchronized(func):
    func.__lock__ = threading.Lock()

    def lock_func(*args, **kwargs):
        with func.__lock__:
            return func(*args, **kwargs)

    return lock_func


81
class FunctionCache:
82 83 84 85 86
    """
    Caches the transformed functions to avoid redundant conversions of the same function.
    """

    def __init__(self):
87
        # Caches the converted static functions. {dygraph_func: static_func}
X
xiongkun 已提交
88
        self._converted_static_func_caches = weakref.WeakKeyDictionary()
89
        # Caches the converted ast node for same source code. {source_code: ast_root}
90
        self._code_to_ast_caches = {}
91
        self._dygraph_to_static = DygraphToStaticAst()
92

93 94 95 96 97 98
    def convert_with_cache(self, func):
        """
        Returns the cached static function or converts it when first encounters the function.
        """
        # If hit cache, return it directly.
        static_func = self._converted_static_func_caches.get(func, None)
99 100

        if static_func is None:
101 102
            static_func = self._convert(func)
            self._converted_static_func_caches[func] = static_func
103 104 105

        return static_func

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    def _convert(self, func):
        """
        Converts dygraph function into static function. For two functions with same dedent code,
        the second function will reuse the transformed ast node of previous one.

        For example:
            # A.py
            def foo(x, y):
                z = x + y
                return z

            # B.py
            def foo(x, y):
                z = x + y
                return z

        If the conversion of A.foo happens after B.foo, it will reuse the transformed ast node of B.foo
        to speed up the conversion.
        """
        # Note: In Python2, it will raise OSError when inspect function
        # with decorator directly and function.__wrapped__ holds the actual function.
127
        func = unwrap(func)
128
        source_code = func_to_source_code(func)
129 130 131 132 133

        # TODO(liym27):
        #  Consider this case: source_code in self._code_to_ast_caches,
        #  but actually they are methods in different classes.
        #  Maybe use (__class__, source_code) as key
134
        if source_code in self._code_to_ast_caches:
135
            root = self._code_to_ast_caches[source_code]
136 137
        else:
            root = gast.parse(source_code)
138
            root = attach_origin_info(root, func)
139 140
            root = self._dygraph_to_static.get_static_ast(root)
            self._code_to_ast_caches[source_code] = root
141

142
        # Get static function from AST
143
        static_func, file_name = ast_to_func(root, func)
144

145
        create_and_update_origin_info_map(root, static_func)
146
        return static_func
147 148

    def exist(self, func):
149
        return func in self._converted_static_func_caches
150 151


152 153 154 155
_CACHE_LOCK = threading.Lock()
_FUNCTION_CACHE = FunctionCache()


156
def convert_to_static(function):
157
    """
158
    Transforms function of dygraph into static function using the cache mechanism.
159

160 161
    Note(dev): It will return function.__func__ if encountering class method.

162 163
    Args:
        function(callable): The function with dygraph layers that will be converted into static layers.
164
    """
165 166
    if getattr(function, ALREADY_D2S, None):
        return function
167 168 169

    # Return directly if decorated with @not_to_static and DO NOT Cache it
    options = getattr(function, CONVERSION_OPTIONS, None)
170 171 172 173 174
    # or ignore paddle api
    need_skip = (options is not None and options.not_convert) or is_paddle_func(
        function
    )
    if need_skip:
175 176
        return function.__func__ if inspect.ismethod(function) else function

177
    with _CACHE_LOCK:
178
        static_func = _FUNCTION_CACHE.convert_with_cache(function)
179
        setattr(static_func, ALREADY_D2S, True)
180 181 182
        return static_func


183
class CacheKey:
184 185 186
    """
    Cached key for ProgramCache.
    """
187

188
    __slots__ = [
189 190 191 192 193 194
        'function_spec',
        'input_args_with_spec',
        'input_kwargs_with_spec',
        'class_instance',
        'kwargs',
        '_spec_names_id',
195
    ]
196

197 198 199 200 201 202
    def __init__(
        self,
        function_spec,
        input_args_with_spec,
        input_kwargs_with_spec,
        class_instance,
203
        **kwargs,
204
    ):
205 206
        """
        Initializes a cache key.
207

208 209
        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
210 211
            input_args_with_spec(list[InputSpec]): actual input args with some arguments replaced by InputSpec.
            input_kwargs_with_spec(list[{string:InputSpec}]): actual input kwargs with some arguments replaced by InputSpec.
212
            class_instance(object): a instance of class `Layer`.
213
            **kwargs(dict): manage other arguments used for better scalability
214
        """
215
        self.function_spec = function_spec
216 217
        self.input_args_with_spec = input_args_with_spec
        self.input_kwargs_with_spec = input_kwargs_with_spec
218
        self.class_instance = class_instance
219 220
        # NOTE: `kwargs` is usually not considered as basic member for `__hash__`
        self.kwargs = kwargs
221 222 223
        self._spec_names_id = _hash_spec_names(
            input_args_with_spec, input_kwargs_with_spec
        )
224 225 226

    @classmethod
    def from_func_and_args(cls, function_spec, args, kwargs, class_instance):
227
        """
228 229 230 231 232 233 234 235 236 237 238
        Generated a CacheKey instance by given inputs.

        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
            args(tuple): tuple of actual inputs arguments.
            kwargs(dict): dict of actual inputs keyword arguments.
            class_instance(object): a instance of class `Layer`.
        """
        # 1. filter `self` in args
        if args and isinstance(args[0], layers.Layer):
            args = args[1:]
239
        # 2. convert tensor and numpy array into InputSpec
240
        _args, _kwargs = function_spec.unified_args_and_kwargs(args, kwargs)
241 242 243 244
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = function_spec.args_to_input_spec(_args, _kwargs)
245 246

        # 3. check whether hit the cache or build a new program for the input arguments
247 248 249 250 251 252
        return CacheKey(
            function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            class_instance,
        )
253 254 255

    def __hash__(self):
        error_msg = "Arguments to a `@paddle.jit.to_static` must be a hashable Python objects (or nested structures of these types)."
256
        with_hook = self.kwargs.get("with_hook", False)
257
        is_train = self.kwargs.get("is_train", False)
258 259 260 261 262 263 264 265 266 267 268
        return hash(
            (
                id(self.function_spec),
                make_hashable(self.input_args_with_spec, error_msg),
                make_hashable(self.input_kwargs_with_spec, error_msg),
                self._spec_names_id,
                self.class_instance,
                with_hook,
                is_train,
            )
        )
269 270 271 272 273 274 275 276

    def __eq__(self, other):
        return (type(self) is type(other)) and hash(self) == hash(other)

    def __neq__(self, other):
        return not self == other

    def __repr__(self):
277
        return "id(function_spec): {}, input_args_with_spec: {}, input_kwargs_with_spec: {}, class_instance: {}".format(
278 279 280 281 282
            id(self.function_spec),
            self.input_args_with_spec,
            self.input_kwargs_with_spec,
            self.class_instance,
        )
283 284 285 286 287 288 289 290 291


def unwrap_decorators(func):
    """
    Unwraps a decorated function and returns the decorator list and inner target.
    """
    decorators = []
    cur = func
    while True:
292
        if isinstance(cur, StaticFunction):
293 294 295 296 297
            decorators.append(cur)
            # Note: if `cur` is a method, keep it as bound method of class.
            instance = cur._class_instance
            if instance is not None:
                cur = cur.dygraph_function.__get__(instance)
298
            else:
299 300 301 302
                cur = cur.dygraph_function
        else:
            break
    return decorators, cur
303

304

305
class StaticFunction:
306 307 308 309 310
    """
    Wrapper class to Manage program conversion of decorated function.

    """

311
    def __init__(self, function, input_spec=None, **kwargs):
312
        """
313
        Initializes a `StaticFunction`.
314 315 316 317

        Args:
            function(callable): A function or method that will be converted into static program.
            input_spec(list[InputSpec]): list of InputSpec to specify the `shape/dtype/name` information for each input argument, default None.
318
            **kwargs(dict): other arguments like `build_strategy` et.al.
319 320
        """
        # save the instance `self` while decorating a method of class.
321

322
        if inspect.ismethod(function):
323 324
            self._dygraph_function = function.__func__
            self._class_instance = function.__self__
325

326 327 328
            if not hasattr(self._class_instance, '_original_funcs'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
329 330
                    "please ensure the class inherits from nn.Layer"
                )
331
            self._class_instance._original_funcs[
332 333
                function.__name__
            ] = self._dygraph_function
334 335 336 337
        else:
            self._dygraph_function = function
            self._class_instance = None

338
        if input_spec is not None and prim_or_cinn_is_enabled(
339
            kwargs.get("build_strategy", None), kwargs.get("backend", None)
340
        ):
J
Jiabin Yang 已提交
341 342
            from paddle.static import InputSpec

343
            for spec in flatten(input_spec):
J
Jiabin Yang 已提交
344
                if isinstance(spec, InputSpec) and -1 in spec.shape:
345 346 347 348 349 350
                    input_spec = None
                    warnings.warn(
                        'Now prim and cinn do not support -1 shape, but input_spec has -1 shape so we set it to None.'
                    )
                    break

351 352 353
        self._input_spec = input_spec
        self._function_spec = FunctionSpec(function, input_spec)
        self._program_cache = ProgramCache()
354
        self._descriptor_cache = weakref.WeakKeyDictionary()
355
        # Note: Hold a reference to ProgramTranslator for switching `enable_to_static`.
356
        self._program_trans = ProgramTranslator()
357
        self._kwargs = kwargs
358
        self._training = True
359 360
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
361

362 363 364 365 366 367 368
        self._property = kwargs.get("property", False)

    @property
    def is_property(self):
        # whether is class proproty to be exported.
        return self._property

369
    def train(self):
370 371
        if (
            isinstance(self._class_instance, layers.Layer)
372
            and self._class_instance.training is False
373
        ):
374 375 376
            raise RuntimeError(
                "Failed to switch train mode. {} is a Layer's method, "
                "please use Layer.train() to switch train mode.".format(
377 378 379
                    self.dygraph_function
                )
            )
380 381 382
        self._training = True

    def eval(self):
383 384
        if (
            isinstance(self._class_instance, layers.Layer)
385
            and self._class_instance.training is True
386
        ):
387 388 389
            raise RuntimeError(
                "Failed to switch eval mode. {} is a Layer's method, "
                "please use Layer.eval() to switch eval mode.".format(
390 391 392
                    self.dygraph_function
                )
            )
393
        self._training = False
394 395 396 397 398 399

    def __get__(self, instance, owner):
        """
        Overrides this method to parse the class instance and call bound method correctly.

        For example:
400

401 402 403 404
            '''
            class Net(Layer):
                def __init__(self):
                    pass
405

406 407 408 409 410 411 412
                @paddle.jit.to_static
                def forward(self, x, y):
                    return x + y

            net = Net()
            out = net(x, y)
            '''
413

414 415
        In above case, `net(x, y)` will call `net.forward(x, y)` firstly that is a bound method
        of `Net` instance. After decorated by `@paddle.jit.to_static`, it will firstly to call `__get__`
416
        to parse the class instance correctly instead of the `StaticFunction` instance.
417
        """
418 419 420
        if instance not in self._descriptor_cache:
            if instance is None:
                return self
421
            # Note(Aurelius84): To construct new instance of StaticFunction when we
422 423 424 425 426 427 428 429
            # first encouter the bound function of layer and cache it.
            new_static_layer = self._clone()
            new_static_layer._class_instance = instance
            self._descriptor_cache[instance] = new_static_layer

        return self._descriptor_cache[instance]

    def _clone(self):
430
        return self.__class__(
431
            self.dygraph_function, self._input_spec, **self._kwargs
432
        )
433 434

    def __call__(self, *args, **kwargs):
435
        """
436 437 438 439
        Supports to call the returned instance with input `args` and `kwargs` directly.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
440
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
441 442 443

        Return:
            Outputs of decorated function.
444
        """
445 446
        if self._property:
            return self._call_dygraph_function(*args, **kwargs)
447

448
        # 1. call dygraph function directly if not enable `declarative`
449
        if not self._program_trans.enable_to_static:
450 451 452 453
            # NOTE(liym27):
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**. StaticFunction.__call__ will run many times, it is appropriate to
            # display this warning message only once.
454
            logging_utils.warn(
R
Ryan 已提交
455
                "The decorator '@paddle.jit.to_static' does NOT work when setting 'paddle.jit.enable_to_static' to False. "
456
                "We will just return dygraph output. If you would like to get static graph output, please call API "
R
Ryan 已提交
457
                "paddle.jit.enable_to_static(True)"
458
            )
459 460
            return self._call_dygraph_function(*args, **kwargs)

461
        if not in_dynamic_mode():
462 463
            raise RuntimeError(
                "Failed to run the callable object {} decorated by '@paddle.jit.to_static', "
464
                "because it is NOT in dynamic mode. Please disable the static graph mode to enter dynamic mode with the "
465
                "following API: paddle.disable_static().".format(
466 467 468
                    self.dygraph_function
                )
            )
469

470 471
        # 2. trace ops from dygraph layers and cache the generated program.
        args, kwargs = self._function_spec.unified_args_and_kwargs(args, kwargs)
472

473 474
        try:
            concrete_program, partial_program_layer = self.get_concrete_program(
475 476
                *args, **kwargs, is_train=self._is_train_mode()
            )
477 478 479
            # 3. synchronize self.training attribute.
            if isinstance(self._class_instance, layers.Layer):
                partial_program_layer.training = self._class_instance.training
480 481
            else:
                partial_program_layer.training = self._training
482

483 484 485
            partial_program_layer._cuda_graph_capture_mode = (
                self._cuda_graph_capture_mode
            )
486 487
            partial_program_layer._cuda_graph_pool_id = self._cuda_graph_pool_id

488
            # 4. return outputs.
489 490 491 492 493 494 495
            try:
                return partial_program_layer(args)
            except Exception as e:
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                    raise
496
        except Exception as e:
497
            error_data = getattr(e, error.ERROR_DATA, None)
498
            if error_data:
499
                error_data.raise_new_exception()
500
            else:
501 502
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
503 504
                    " if you can't handle this {} yourself.".format(type(e))
                )
505
                raise e
506

507 508
    def _is_train_mode(self):
        if self._class_instance is not None:
509 510 511
            if not hasattr(self._class_instance, 'training'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
512 513
                    "please ensure the class inherits from nn.Layer"
                )
514 515 516 517
            return self._class_instance.training
        else:
            return self._training

518 519 520 521 522 523
    def _call_dygraph_function(self, *args, **kwargs):
        """
        Calls dygraph function directly and returns the outputs.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
524
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
525 526 527 528

        Return:
            Outputs of dygraph function.
        """
529
        return self.dygraph_function(*args, **kwargs)
530

531 532 533 534 535 536 537 538 539
    def _raise_when_property(self):
        """raise RuntimeError when property=True

        Raises:
            RuntimeError: can not call this func when property=True
        """
        if self.is_property:
            raise RuntimeError("Can not call the func when property=True.")

540 541 542 543 544 545 546 547 548 549 550
    def get_concrete_program(self, *args, **kwargs):
        """
        Returns traced concrete program and inner executable partial layer.

        Args:
            *args(tuple): input arguments values or InputSpec
            **kwargs(dict) : input kwargs values.

        Returns:
            Traced ConcreteProgram and executable translated Layer.
        """
551
        self._raise_when_property()
552

553
        with_hook = kwargs.get("with_hook", False)
554
        is_train = kwargs.get("is_train", True)
555
        is_prim_infer = kwargs.get("is_prim_infer", False)
556 557 558 559
        if "is_train" in kwargs:
            kwargs.pop("is_train")
        if "with_hook" in kwargs:
            kwargs.pop("with_hook")
560 561
        if "is_prim_infer" in kwargs:
            kwargs.pop("is_prim_infer")
562 563
        # 1. unify args/kwargs and replace Tensor with InputSpec
        if len(args) != len(self._function_spec.args_name):
564
            args, kwargs = self._function_spec.unified_args_and_kwargs(
565 566 567 568 569 570
                args, kwargs
            )
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = self._function_spec.args_to_input_spec(args, kwargs)
571 572

        # 2. generate cache key
573 574 575 576 577 578 579
        cache_key = CacheKey(
            self._function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            self._class_instance,
            **self._kwargs,
            with_hook=with_hook,
580
            is_train=is_train,
581
        )
582 583 584 585 586 587 588 589 590 591 592
        if is_prim_infer:
            (
                concrete_program,
                partial_program_layer,
            ) = self._program_cache.get_program_without_cache(cache_key)
        else:
            # 3. check whether hit the cache or build a new program for the input arguments
            concrete_program, partial_program_layer = self._program_cache[
                cache_key
            ]
        return concrete_program, partial_program_layer
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    def get_concrete_program_with_cache_key(self, cached_key):
        """
        Returns traced concrete program and inner executable partial layer by cached key.

        Args:
            cached_key(CacheKey): The cached key use to get concrete program.

        Returns:
            Traced ConcreteProgram and executable translated Layer.
        """
        self._raise_when_property()
        (
            concrete_program,
            partial_program_layer,
        ) = self._program_cache.get_program_without_cache(cached_key)
609 610 611 612 613 614 615 616 617 618 619 620 621
        return concrete_program, partial_program_layer

    def get_traced_count(self):
        """
        Returns the number of traced programs for the decorated function.
        """
        return len(self._program_cache)

    @property
    def code(self):
        """
        Returns the source code of transformed static function for debugging.
        """
622
        static_func = convert_to_static(self.dygraph_function)
623 624 625 626 627 628 629 630
        source_code = func_to_source_code(static_func)
        return source_code

    @property
    def dygraph_function(self):
        """
        Returns the original decorated function.
        """
631 632 633 634
        if self._class_instance is not None:
            return self._dygraph_function.__get__(self._class_instance)
        else:
            return self._dygraph_function
635 636 637 638 639

    @property
    def concrete_program(self):
        """
        Returns recent ConcreteProgram instance of decorated function.
A
Aurelius84 已提交
640 641 642 643

        Examples:
            .. code-block:: python

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
                >>> # doctest: +SKIP
                >>> import paddle
                >>> from paddle.jit import to_static
                >>> from paddle.static import InputSpec

                >>> paddle.disable_static()

                >>> def foo(x, y):
                ...     z = x + y
                ...     return z
                ...
                >>> # usage 1:
                >>> decorated_foo = to_static(foo, input_spec=[InputSpec([10], name='x'), InputSpec([10], name='y')])
                >>> print(decorated_foo.concrete_program)

                >>> # usage 2:
                >>> decorated_foo = to_static(foo)
                >>> out_foo = decorated_foo(paddle.rand([10]), paddle.rand([10]))
                >>> print(decorated_foo.concrete_program)
663
        """
664 665
        return self.concrete_program_specify_input_spec(input_spec=None)

666
    def concrete_program_specify_input_spec(
667
        self, input_spec=None, with_hook=False, is_prim_infer=False
668
    ):
669 670 671
        """
        Returns recent ConcreteProgram instance of decorated function while
        specifying input_spec. If the self._function_spec already has
672
        input_spec, it will check the compatibility of input input_spec and
673 674 675 676 677 678 679
        the self._function_spec.input_spec. If input input_spec=None, then
        this method uses self._function_spec.input_spec

        args:
            input_spec (list[InputSpec], optional): Describes the input of
                the translate function.
        """
680
        self._raise_when_property()
681 682 683 684
        # if specific the `input_spec`, the length of program_cache will always 1,
        # else, return the last one.
        cached_program_len = len(self._program_cache)
        # If specific `input_spec`, apply convertion from dygraph layers into static Program.
685 686
        # NOTE(jiabin): is_prim_infer indicates this method called by paddle.jit.save and it is worked in prim mode

687
        if cached_program_len == 0:
C
Chen Weihang 已提交
688 689 690
            desired_input_spec = input_spec
            if self._function_spec.input_spec is not None:
                if input_spec is not None and not input_specs_compatible(
691 692
                    flatten(input_spec), flatten(self._function_spec.input_spec)
                ):
693
                    raise ValueError(
694 695 696 697
                        "The `input_spec`: {} used to construct concrete_program is conflict with the `input_spec`: {} in `@paddle.jit.to_static`".format(
                            input_spec, self._function_spec.input_spec
                        )
                    )
C
Chen Weihang 已提交
698 699 700
                # NOTE(chenweihang): we should always translated program based on the `input_spec`
                # decorated on forward if it is valid
                desired_input_spec = self._function_spec.input_spec
701 702
                if input_spec is not None:
                    logging_utils.warn(
703 704 705 706
                        "\n\nYou have specified `input_spec` both in function definition (higher priority) and `paddle.jit.save` (will be ignored.)\n\n\t Using: {}\n\n\t Ignore: {}\n".format(
                            desired_input_spec, input_spec
                        )
                    )
707

708
            has_input_spec = desired_input_spec is not None
A
Aurelius84 已提交
709
            if has_input_spec:
C
Chen Weihang 已提交
710
                concrete_program, _ = self.get_concrete_program(
711 712
                    *desired_input_spec,
                    with_hook=with_hook,
713
                    is_train=self._is_train_mode(),
714
                    is_prim_infer=is_prim_infer,
715
                )
716
                return concrete_program
717
            else:
A
Aurelius84 已提交
718
                raise ValueError(
719 720 721 722
                    "No valid transformed program for {}.\n\t    Please specific `input_spec` in `@paddle.jit.to_static` or feed input tensor to call the decorated function at once.\n".format(
                        self._function_spec
                    )
                )
723 724 725
        elif with_hook:
            cache_key = self._program_cache._recent_cache_key
            cache_key.kwargs["with_hook"] = True
726 727 728 729 730 731 732 733
            if not is_prim_infer:
                concrete_program, _ = self._program_cache[cache_key]
                return concrete_program
            else:
                concrete_program, _ = self.get_concrete_program_with_cache_key(
                    cache_key
                )
                return concrete_program
734 735
        # If more than one programs have been cached, return the recent converted program by default.
        elif cached_program_len > 1:
736
            logging_utils.warn(
737 738 739 740
                "Current {} has more than one cached programs: {}, the last traced progam will be return by default.".format(
                    self._function_spec, cached_program_len
                )
            )
741 742 743 744 745 746 747 748 749 750 751 752
        if not is_prim_infer:
            cache_key, (
                concrete_program,
                partial_layer,
            ) = self._program_cache.last()
            return concrete_program
        else:
            cache_key = self._program_cache._recent_cache_key
            concrete_program, _ = self.get_concrete_program_with_cache_key(
                cache_key
            )
            return concrete_program
753

754 755 756
    def rollback(self):
        """
        Rollback into original dygraph functions for current class instance.
757

758 759 760 761 762 763
        Returns:
            Function or Method

        Example::
            .. code-block:: python

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
                >>> # doctest: +SKIP
                >>> import paddle

                >>> class Net(paddle.nn.Layer):
                ...     def __init__(self):
                ...         super().__init__()
                ...
                ...     def forward(self, x, flag=True):
                ...         if flag:
                ...             out = x + 1
                ...         else:
                ...             out = x - 1
                ...         return out
                ...
                >>> x = paddle.randn([10, 1], 'float32')
                >>> net = paddle.jit.to_static(Net())  # convert into static graph mode
                >>> out = net(x)

                >>> net.forward.rollback()  # rollback into dygraph mode
                >>> out = net(x)
784 785 786 787 788 789 790 791 792 793 794 795 796 797
        """

        def rollback_impl(class_instance):
            for name, func in class_instance._original_funcs.items():
                setattr(class_instance, name, func.__get__(class_instance))

            for sublayer in class_instance.sublayers(include_self=False):
                rollback_impl(sublayer)

        if self._class_instance is None:
            return self._dygraph_function

        # only rollback sub-functions on path of top _dygraph_function
        func_name = self._dygraph_function.__name__
798 799 800 801 802
        assert (
            func_name in self._class_instance._original_funcs
        ), "Not Found function '{}' in class '{}'.".format(
            func_name, self._class_instance.__name__
        )
803
        func = self._class_instance._original_funcs[func_name]
804 805 806
        setattr(
            self._class_instance, func_name, func.__get__(self._class_instance)
        )
807 808 809 810 811 812

        for sublayer in self._class_instance.sublayers(include_self=False):
            rollback_impl(sublayer)

        return getattr(self._class_instance, func_name)

813 814 815 816 817 818 819 820 821 822 823
    def __deepcopy__(self, memo):
        """
        Customized behavior for copy.deepcopy, return original decorated function instead
        of a new StaticFunction Object. StaticFunction itself is not copyable becuase it's
        associated with class_instance.

        We add __deepcopy__ here only for the following usage:

        Example::
            .. code-block:: python

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
                >>> import copy
                >>> import paddle

                >>> class Net(paddle.nn.Layer):
                ...     def __init__(self):
                ...         super().__init__()
                ...
                ...     def forward(self, x, flag=True):
                ...         if flag:
                ...             out = x + 1
                ...         else:
                ...             out = x - 1
                ...         return out
                ...
                >>> x = paddle.randn([10, 1], 'float32')
                >>> net = paddle.jit.to_static(Net())  # convert into static graph mode

                >>> copy_net = copy.deepcopy(net)      # deepcopy a new net without @to_static
842

843 844 845 846 847 848
        Please attention that original 'net' will unwrap @to_static and rollback into simple Layer.
        """
        if self._class_instance is not None:
            net_name = type(self._class_instance).__name__
            logging_utils.log(
                level=-1,
849 850 851 852 853
                msg="Not recommend to deepcopy '{}' decorated with @to_static, it has side effect that will"
                " rollback into original state before @to_static. Please deepcopy '{}' before applying @to_static.".format(
                    net_name, net_name
                ),
            )
854
            self.rollback()
855 856 857
            return self._dygraph_function.__get__(
                memo[id(self._class_instance)]
            )
858 859 860
        else:
            return self._dygraph_function

861 862 863 864 865
    @property
    def inputs(self):
        """
        Returns input tensors of recent converted static program.
        """
866
        self._raise_when_property()
867 868
        concrete_program = self.concrete_program
        inputs = [
869 870
            var
            for var in flatten(concrete_program.inputs)
871 872 873
            if isinstance(var, framework.Variable)
        ]
        return inputs
874

875
    @property
876 877 878 879
    def outputs(self):
        """
        Returns output tensors of recent converted static program.
        """
880
        self._raise_when_property()
881 882
        concrete_program = self.concrete_program
        outputs = [
883 884
            var
            for var in flatten(concrete_program.outputs)
885 886 887 888
            if isinstance(var, framework.Variable)
        ]

        return outputs
889

890
    @property
891 892 893 894
    def main_program(self):
        """
        Returns recent converted static main program.
        """
895
        self._raise_when_property()
896 897 898
        concrete_program = self.concrete_program
        main_program = concrete_program.main_program
        return main_program
899

900 901 902
    @property
    def program_cache(self):
        return self._program_cache
903

904 905 906
    @property
    def function_spec(self):
        return self._function_spec
907 908


909 910 911 912 913 914 915 916 917 918
def _verify_init_in_dynamic_mode(class_instance):
    """
    Verifies the instance is initialized in dynamic mode.
    """
    if isinstance(class_instance, layers.Layer):
        if not class_instance._init_in_dynamic_mode:
            raise RuntimeError(
                " `paddle.jit.to_static` is only available in dynamic mode. Please call `paddle.disable_static()` before "
                "initializing your Layer class `{}` . Because parameters of Layer class should be initialized firstly "
                "in dynamic mode while applying transformation.".format(
919 920 921
                    class_instance
                )
            )
922 923


924
class HookHelper:
925 926 927 928 929 930 931 932 933
    """
    Only For converting pre/post hooks operation in outermost layer while jit.save.
    Because hooks in sublayer have been processed automatically.
    """

    def __init__(self, func, class_instance, with_hook=False):
        self.func = func
        self.class_instance = class_instance
        self.with_hook = with_hook
934 935 936
        self.need_apply_hook = (
            with_hook
            and isinstance(self.class_instance, layers.Layer)
937
            and func.__name__ == "forward"
938
        )
939 940 941 942 943

    def apply_pre_hooks(self, inputs):
        """
        Apply _forward_pre_hooks from outermost layer
        """
944 945
        if not self.need_apply_hook:
            return inputs
946 947 948 949 950 951

        inputs = inputs[1:]
        for forward_pre_hook in self.class_instance._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self.class_instance, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
952
                    hook_result = (hook_result,)
953 954 955 956 957 958 959 960
                inputs = hook_result

        return [self.class_instance] + list(inputs)

    def apply_post_hooks(self, inputs, outputs):
        """
        Apply _forward_post_hooks from outermost layer
        """
961 962
        if not self.need_apply_hook:
            return outputs
963 964

        inputs = inputs[1:]
965 966 967 968 969 970
        for (
            forward_post_hook
        ) in self.class_instance._forward_post_hooks.values():
            hook_result = forward_post_hook(
                self.class_instance, inputs, outputs
            )
971 972 973 974 975 976 977
            if hook_result is not None:
                outputs = hook_result

        inputs.insert(0, self.class_instance)
        return outputs


978
class ConcreteProgram:
979
    __slots__ = [
980 981 982 983 984 985 986
        'inputs',
        'outputs',
        'main_program',
        "startup_program",
        "parameters",
        "function",
        'kwargs',
987 988
    ]

989 990 991 992 993 994 995 996
    def __init__(
        self,
        inputs,
        outputs,
        parameters,
        function,
        main_program,
        startup_program=None,
997
        **kwargs,
998
    ):
999 1000 1001
        self.inputs = inputs
        self.outputs = outputs
        self.main_program = main_program
1002
        self.startup_program = startup_program
1003
        self.parameters = parameters
1004
        self.function = function
1005
        self.kwargs = kwargs
1006 1007 1008

    @staticmethod
    @switch_to_static_graph
1009 1010 1011
    def from_func_spec(
        func_spec, input_spec, input_kwargs_spec, class_instance, **kwargs
    ):
1012
        """
1013 1014
        Builds the main_program with specialized inputs and returns outputs
        of program as fetch_list.
1015 1016 1017

        Args:
            func_spec(FunctionSpec): A FunctionSpec instance for decorated function.
1018
            input_spec(list[InputSpec]):
1019
        """
1020 1021 1022
        # verify the instance is initialized in imperative mode.
        _verify_init_in_dynamic_mode(class_instance)

1023
        # Transforms dygraph function into static function and caches it.
1024
        dygraph_function = func_spec.dygraph_function
1025
        static_func = convert_to_static(dygraph_function)
1026
        # apply pre\post hook for outermost layer
1027 1028 1029
        hook_helper = HookHelper(
            dygraph_function, class_instance, kwargs.get("with_hook", False)
        )
1030

1031 1032
        main_program, startup_program = framework.Program(), framework.Program()
        # Note: The random seed should be synchronized into cached program
1033
        # if set in `fluid.dygraph_guard` because some ops rely on it, such as
1034
        # `fluid.layers.dropout`.
1035
        main_program.random_seed = framework.default_main_program().random_seed
1036 1037 1038
        startup_program.random_seed = (
            framework.default_startup_program().random_seed
        )
1039

1040
        with framework.program_guard(main_program, startup_program):
1041
            with _switch_declarative_mode_guard_(is_declarative=True):
1042
                # 1. Adds `paddle.static.data` layers for input if needed
1043
                static_inputs = func_spec.to_static_inputs_with_spec(
1044 1045
                    input_spec, main_program
                )
1046
                _kwargs = func_spec.to_static_inputs_with_spec(
1047 1048
                    input_kwargs_spec, main_program
                )
1049
                if class_instance:
1050 1051 1052
                    static_inputs = tuple(
                        [class_instance] + list(static_inputs)
                    )
1053

1054
                # 2. Builds program only once and returns the output Variables.
1055 1056 1057
                with param_guard(
                    get_parameters(class_instance, False)
                ), param_guard(get_buffers(class_instance, False)):
1058
                    try:
1059 1060
                        # only for jit.save, do nothing while train and eval process
                        inputs = hook_helper.apply_pre_hooks(static_inputs)
1061 1062
                        if _kwargs:
                            outputs = static_func(*inputs, **_kwargs)
1063 1064
                        else:
                            outputs = static_func(*inputs)
1065
                        outputs = hook_helper.apply_post_hooks(inputs, outputs)
1066 1067
                    except BaseException as e:
                        # NOTE: If e is raised in compile time, e should be attached to ERROR_DATA here.
1068
                        error.attach_error_data(e)
1069 1070 1071
                        error_data = getattr(e, error.ERROR_DATA, None)
                        if error_data:
                            error_data.raise_new_exception()
1072 1073
                        raise

1074 1075 1076 1077 1078 1079 1080
                # 3. Gets all ParamBases and buffered VarBases in the function
                all_parameters_and_buffers = (
                    ProgramTranslator.get_instance()._params_recorder.pop(
                        main_program
                    )
                )

1081
                if outputs is not None:
1082 1083 1084 1085
                    need_wrap_into_list = (
                        not isinstance(outputs, (tuple, list))
                        or len(outputs) == 1
                    )
1086 1087
                    if need_wrap_into_list:
                        outputs = [outputs]
1088

1089 1090
        main_program = update_op_callstack_with_origin_info(main_program)

1091 1092 1093 1094 1095 1096 1097
        return ConcreteProgram(
            inputs=static_inputs,
            outputs=outputs,
            parameters=all_parameters_and_buffers,
            function=dygraph_function,
            main_program=main_program,
            startup_program=startup_program,
1098
            **kwargs,
1099
        )
1100 1101


1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
class ParametersRecorder:
    def __init__(self):
        self.params_dict = {}

    @synchronized
    def add(self, program, param):
        """use the default_program as key, append param the parameter list."""
        key = self._program_hash(program)
        if key not in self.params_dict:
            self.params_dict[key] = set()
        params = self.params_dict[key]
        params.add(param)

    def pop(self, program):
        params = self.params_dict.get(self._program_hash(program))
        if params is None:
            return []
        del self.params_dict[self._program_hash(program)]
        return list(params)

    def _program_hash(self, program):
        """
        because program is not deleted while calling from_func_spec.
        so it's ok to use id(program)
        """
        return id(program)


1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
class ParametersMap:
    def __init__(self):
        self.params_dict = {}

    @synchronized
    def add(self, program, id, param):
        """use the default_program as key, append param the parameter list."""
        key = self._program_hash(program)
        if key not in self.params_dict:
            self.params_dict[key] = {}

        params = self.params_dict[key]
        params[id] = param

    def get(self, program, id):
        params = self.params_dict.get(self._program_hash(program))
        if params is None:
            return None
        if id in params.keys():
            return params[id]
        return None

    def _program_hash(self, program):
        """
        because program is not deleted while calling from_func_spec.
        so it's ok to use id(program)
        """
        return id(program)


1160
class FallbackProgramLayer:
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    __slots__ = [
        '_instance',
        '_dy_func',
        'training',
        '_cuda_graph_capture_mode',
        '_cuda_graph_pool_id',
    ]

    def __init__(self, instance, dy_func):
        self._instance = instance
        self._dy_func = dy_func

    def __call__(self, inputs):
        return self._dy_func(*inputs)

    def __getattr__(self, key):
        if key not in self.__slots__:
            raise RuntimeError(
                "There raises a exception after applying `@paddle.jit.to_static()` and already switch into fallback mode. \n"
                "You can't get attribute for a fallback program layer. Please check `to_static.error` file for detail."
            )
        elif key in ['training']:
            if self._instance is not None:
                return getattr(self._instance, key)
            return

        return super().__getattr__(key)

    def __setattr__(self, key, value):
        if key not in self.__slots__:
            raise RuntimeError(
                "There raises a exception after applying `@paddle.jit.to_static()` and already switch into fallback mode. \n"
                "You can't get attribute for a fallback program layer. Please check `to_static.error` file for detail."
            )
        elif key in ['training']:
            if self._instance is not None:
                return setattr(self._instance, key, value)
            return

        return super().__setattr__(key, value)


1203
class ProgramCache:
1204 1205 1206
    """
    Wrapper class for the program functions defined by dygraph function.
    """
1207

1208 1209
    dy2static_error_file = "to_static.error"

1210
    def __init__(self):
1211
        # {hash_id : (concrete_program, partial_layer)}
1212
        self._caches = collections.OrderedDict()
1213
        # trace mostly recent used program
1214
        self._recent_key = None
1215
        self._recent_cache_key = None
1216

1217
    def _build_once(self, cache_key):
1218 1219
        # TODO(Aurelius84): Need a gloabl FLAGS to enable/disable to_prim
        enable_prim = cache_key.kwargs['build_strategy'].build_cinn_pass
1220

1221 1222 1223 1224 1225 1226 1227 1228
        # NOTE(xiongkun): Need a global FLAGS to enable/disable fallback
        enable_fallback = enable_prim
        try:
            concrete_program = ConcreteProgram.from_func_spec(
                func_spec=cache_key.function_spec,
                input_spec=cache_key.input_args_with_spec,
                input_kwargs_spec=cache_key.input_kwargs_with_spec,
                class_instance=cache_key.class_instance,
1229
                **cache_key.kwargs,
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
            )
        except Exception as e:
            if enable_fallback:
                warnings.warn(
                    "Exception is thrown while applying @paddle.jit.to_static. It will fallback into dygraph mode for training.\n"
                    "1. You can check `to_static.error` file in current workspace directory for detail.\n"
                    "2. In fallback mode, you can only do training, can't call paddle.jit.save(). Please modify model code according `to_static.error` firstly"
                )
                # TODO(xiongkun) change different file name to avoid overwrite.
                with open(self.dy2static_error_file, "w") as fp:
                    fp.write(str(e))
1241

1242 1243 1244 1245 1246 1247 1248
                fallback_layer = FallbackProgramLayer(
                    cache_key.class_instance,
                    cache_key.function_spec.dygraph_function,
                )
                return fallback_layer, fallback_layer
            else:
                raise
1249

1250 1251
        backend = cache_key.kwargs['backend']
        if prim_or_cinn_is_enabled(cache_key.kwargs['build_strategy'], backend):
1252
            for var in concrete_program.main_program.list_vars():
1253
                if var.type not in NO_SHAPE_VAR_TYPE and -1 in var.shape:
1254 1255 1256 1257 1258
                    warnings.warn(
                        "Now prim and cinn do not support -1 shape, but the shape of var {} is {}".format(
                            var.name, var.shape
                        )
                    )
1259

1260 1261 1262
        partial_program = partial_program_from(
            concrete_program, cache_key.class_instance is not None
        )
1263 1264 1265 1266 1267
        with backend_guard(backend):
            if core._is_fwd_prim_enabled():
                partial_program.set_hooker(
                    PrimHooker(concrete_program.main_program, backend)
                )
1268 1269
        return concrete_program, partial_program

1270
    def __getitem__(self, item):
1271
        if not isinstance(item, CacheKey):
1272 1273 1274 1275
            raise ValueError(
                'type(item) should be CacheKey, but received %s'
                % type_name(item)
            )
1276
        item_id = hash(item)
1277
        self._recent_cache_key = item
1278
        self._recent_key = item_id
1279 1280
        if item_id not in self._caches:
            self._caches[item_id] = self._build_once(item)
1281 1282 1283
            # Note: raise warnings if number of traced program is more than `max_tracing_count`
            current_tracing_count = len(self._caches)
            if current_tracing_count > MAX_TRACED_PROGRAM_COUNT:
1284
                logging_utils.warn(
1285
                    "Current traced program number: {} > `max_tracing_count`:{}. Too much cached programs will bring expensive overhead. "
1286 1287 1288 1289
                    "The reason may be: (1) passing tensors with different shapes, (2) passing python objects instead of tensors.".format(
                        current_tracing_count, MAX_TRACED_PROGRAM_COUNT
                    )
                )
1290

1291
        return self._caches[item_id]
1292

1293 1294 1295
    def get_program_without_cache(self, cache_key):
        return self._build_once(cache_key=cache_key)

1296
    def get_program(self, item):
1297
        if not isinstance(item, CacheKey):
1298
            raise ValueError(
1299 1300 1301
                "Input item's type should be FunctionSpec, but received %s"
                % type_name(item)
            )
1302 1303
        item_id = hash(item)
        if item_id not in self._caches:
1304
            raise RuntimeError(
1305
                "Failed to find program for input item, please decorate input function by `@paddle.jit.to_static`."
1306
            )
1307
        return self._caches[item_id]
1308

1309
    def last(self):
1310 1311 1312
        assert (
            len(self._caches) >= 1
        ), "No valid cached program in ProgramCache."
1313 1314
        assert self._recent_key is not None
        return self._recent_key, self._caches[self._recent_key]
1315

1316 1317 1318 1319
    def __len__(self):
        return len(self._caches)

    def concrete_programs(self):
1320
        return [cp for key, (cp, _) in self._caches.items()]
1321

1322 1323 1324
    def clear(self):
        self._caches = collections.OrderedDict()

1325

1326
class PrimHooker(PartialProgramLayerHook):
1327
    def __init__(self, original_program, backend):
1328 1329 1330 1331
        if len(original_program.blocks) > 1:
            raise ValueError(
                'The primitive mode only support one block currently.'
            )
1332
        self.backend = backend
1333
        self.custom_vjps = set()
1334 1335 1336 1337 1338 1339 1340
        with backend_guard(self.backend):
            if core._is_all_prim_enabled():
                self.custom_vjps = {
                    op.type
                    for op in original_program.block(0).ops
                    if core.has_comp_grad_op_maker(op.type)
                }
1341 1342

    def before_append_backward(self, forward_program):
1343 1344 1345 1346
        with backend_guard(self.backend):
            if core._is_fwd_prim_enabled():
                _to_prim(forward_program.blocks, blacklist=self.custom_vjps)
            return forward_program
1347 1348

    def after_append_backward(self, whole_program, backward_start_idx):
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        with backend_guard(self.backend):
            backward_length = (
                len(whole_program.block(0).ops) - backward_start_idx
            )
            if core._is_fwd_prim_enabled() and len(self.custom_vjps) != 0:
                # only process backward part of block
                _to_prim(whole_program.blocks, backward_length=backward_length)
            new_start_index = len(whole_program.block(0).ops) - backward_length
            if backward_length > 0:
                # only process forward part of block
                _to_prim(whole_program.blocks, start_idx=new_start_index)
            return whole_program, new_start_index
1361 1362

    def after_infer(self, infer_program):
1363 1364 1365 1366
        with backend_guard(self.backend):
            if core._is_fwd_prim_enabled():
                _to_prim(infer_program.block(0))
            return infer_program
1367 1368


1369
class ProgramTranslator:
1370
    """
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    Class to translate dygraph function into static graph function. The object
    of this class is a singleton.

    Args:
        None.

    Returns:
        ProgramTranslator: the singleton object.

    Examples:
        .. code-block:: python

1383
            >>> import paddle
1384

1385 1386 1387
            >>> # Two methods get same object because ProgramTranslator is a singleton
            >>> paddle.jit.dy2static.program_translator.ProgramTranslator()
            >>> paddle.jit.dy2static.program_translator.ProgramTranslator.get_instance()
1388

1389 1390
    """

1391
    _singleton_lock = threading.Lock()
1392 1393 1394 1395 1396 1397
    _instance = None

    @synchronized
    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = object.__new__(cls, *args, **kwargs)
1398
            cls._instance._initialized = False
1399 1400 1401 1402 1403
        return cls._instance

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
1404 1405
            with cls._singleton_lock:
                cls._instance = cls()
1406 1407 1408 1409 1410
        return cls._instance

    @classmethod
    def reset(cls):
        if cls._instance is not None:
1411
            cls._instance._initialized = False
1412 1413
            cls._instance.__init__()

1414
    def __init__(self):
1415
        # To make sure that calls __init__ only once.
1416
        if self._initialized:
1417
            return
1418 1419
        self._initialized = True
        self._program_cache = ProgramCache()
1420
        self._params_recorder = ParametersRecorder()
1421
        self._params_map = ParametersMap()
1422
        self.enable_to_static = True
1423

1424
    def enable(self, enable_to_static):
1425
        """
1426
        Enable or disable the converting from imperative to static graph by
1427 1428 1429
        ProgramTranslator globally.

        Args:
1430
            enable_to_static (bool): True or False to enable or disable converting to static.
1431 1432 1433 1434 1435 1436 1437

        Returns:
            None.

        Examples:
            .. code-block:: python

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()

                >>> x = paddle.ones([1, 2])
                >>> x_v = prog_trans.get_output(func, x)
                >>> print(x_v)
                Tensor(shape=[1, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
                [[0., 0.]])
1455
        """
1456 1457 1458 1459 1460 1461
        check_type(
            enable_to_static,
            "enable_to_static",
            bool,
            "ProgramTranslator.enable",
        )
1462
        self.enable_to_static = enable_to_static
1463

1464 1465
    def get_output(self, dygraph_func, *args, **kwargs):
        """
1466
        Returns the output dygraph Tensor for dygraph function. The dygraph
1467
        function will be translated into static graph function so the under
1468
        beneath numerical result will be calculated by static graph mode.
1469 1470 1471

        Args:
            dygraph_func (callable): the dygraph function.
1472 1473
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1474 1475

        Returns:
1476
            Tensor or tuple of Tensors: the dygraph Tensor containing digital result.
1477 1478 1479 1480

        Examples:
            .. code-block:: python

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()

                >>> x = paddle.ones([1, 2])
                >>> x_v = prog_trans.get_output(func, x)
                >>> print(x_v)
                Tensor(shape=[1, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
                [[0., 0.]])
1498
        """
1499 1500 1501
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_output"
1502

1503
        if not self.enable_to_static:
1504 1505
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**.
1506
            logging_utils.warn(
1507 1508 1509 1510
                "The ProgramTranslator.get_output doesn't work when setting ProgramTranslator.enable to False. "
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1511
            return dygraph_func(*args, **kwargs)
1512
        try:
1513
            function_spec = FunctionSpec(dygraph_func)
1514
            cache_key = CacheKey.from_func_and_args(
1515 1516 1517 1518 1519
                function_spec,
                args,
                kwargs,
                getattr(dygraph_func, '__self__', None),
            )
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
            _, partial_program_layer = self._program_cache[cache_key]

            if args and isinstance(args[0], layers.Layer):
                # Synchronize self.training attribute.
                partial_program_layer.training = args[0].training
                args = args[1:]
            try:
                return partial_program_layer(args)
            except BaseException as e:
                # NOTE:
                # 1. If e is raised in compile time, e should have been attached to ERROR_DATA before;
                # 2. If e raised in runtime, e should be attached to ERROR_DATA here.
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                raise
1536
        except BaseException as e:
1537 1538 1539 1540 1541 1542
            error_data = getattr(e, error.ERROR_DATA, None)
            if error_data:
                error_data.raise_new_exception()
            else:
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
1543 1544
                    " if you can't handle this {} yourself.".format(type(e))
                )
1545
                raise e
1546 1547 1548

    def get_func(self, dygraph_func):
        """
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
        Returns a callable function which converts imperative dygraph APIs of
        the input dygraph_func into declarative net-building APIs, which means
        it doesn't return immediate digital result as get_output does.
        Users should handle Program and Executor by themselves.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
            callable: converting imperative dygraph APIs into declarative
            net-building APIs.
1560 1561 1562 1563

        Examples:
            .. code-block:: python

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()
                >>> static_func = prog_trans.get_func(func)
                >>> print(callable(static_func))
                True
1577
        """
1578 1579 1580
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_func"
1581

1582
        if not self.enable_to_static:
1583
            logging_utils.warn(
1584 1585 1586
                "The ProgramTranslator.get_func doesn't work when setting ProgramTranslator.enable to False. We will "
                "just return dygraph output. Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1587
            return dygraph_func
1588

1589
        static_func = convert_to_static(dygraph_func)
1590 1591
        return static_func

1592 1593
    def get_program(self, dygraph_func, *args, **kwargs):
        """
1594
        Returns the translated static program and input/output Tensors from
1595 1596 1597 1598
        dygraph function. The users can use the program to run by executor.

        Args:
            dygraph_func (callable): the dygraph function.
1599 1600
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1601 1602 1603

        Returns:
            tuple of (main_program, startup_program, inputs, outputs) whose
1604
            types are (Program, Program, list of Tensors, list of Tensors).
1605 1606
            main_program: the converted main program.
            startup_program: the converted startup program.
1607 1608
            inputs: list of input Tensors which need to be fed.
            outputs: list of output Tensors which users can fetch.
1609 1610 1611 1612

        Examples:
            .. code-block:: python

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()
                >>> x = paddle.ones([1, 2])
                >>> main_prog, start_prog, inputs, outputs = prog_trans.get_program(func, x)
                >>> print([i.name for i in inputs])
                >>> # [u'generated_tensor_0'] the feed input Tensor name representing x
                >>> print([o.name for o in outputs])
                >>> # [u'_generated_var_4'] the fetch output Tensor name representing x_v
1629
        """
1630 1631 1632
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_program"
1633

1634
        if not self.enable_to_static:
1635
            logging_utils.warn(
1636 1637 1638 1639
                "The ProgramTranslator.get_program doesn't work when setting ProgramTranslator.enable to False."
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1640
            return dygraph_func(*args, **kwargs)
1641

1642
        function_spec = FunctionSpec(dygraph_func)
1643
        cache_key = CacheKey.from_func_and_args(
1644 1645
            function_spec, args, kwargs, getattr(dygraph_func, '__self__', None)
        )
1646 1647
        concrete_program, partial_program_layer = self._program_cache[cache_key]

1648 1649
        # Note: concrete_program hold all input/output infos include non-Variable
        input_vars = [
1650 1651
            var
            for var in concrete_program.inputs
1652 1653 1654
            if isinstance(var, framework.Variable)
        ]
        output_vars = [
1655 1656
            var
            for var in concrete_program.outputs
1657 1658 1659
            if isinstance(var, framework.Variable)
        ]

1660 1661 1662 1663 1664 1665
        return (
            concrete_program.main_program,
            concrete_program.startup_program,
            input_vars,
            output_vars,
        )
1666

1667 1668
    def get_code(self, dygraph_func):
        """
1669 1670 1671 1672 1673 1674
        Returns the translated static function string code from dygraph function.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
1675 1676 1677 1678 1679
            str: the string code of translated static function.

        Examples:
            .. code-block:: python

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
                >>> # doctest: +SKIP
                >>> import paddle
                >>> def func(x):
                ...     if paddle.mean(x) > 0:
                ...         x_v = x - 1
                ...     else:
                ...         x_v = x + 1
                ...     return x_v
                ...
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()

                >>> code = prog_trans.get_code(func)
                >>> print(type(code))
                <class 'str'>
1694
        """
1695 1696 1697
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_code"
1698
        # Gets AST from dygraph function
1699 1700 1701

        unwrap_func = unwrap(dygraph_func)
        raw_code = inspect.getsource(unwrap_func)
1702 1703 1704 1705 1706
        code = textwrap.dedent(raw_code)
        root = gast.parse(code)

        # Transform AST
        dygraph_to_static = DygraphToStaticAst()
1707
        root = dygraph_to_static.get_static_ast(root)
1708 1709

        # Get source_code
1710
        source_code = ast_to_source_code(root)
1711 1712
        return source_code

1713
    def get_program_cache(self):
1714
        """
1715 1716 1717 1718 1719 1720 1721 1722 1723
        Returns the ProgramCache instance. This method is used by PaddlePaddle
        developers to manage program cache in ProgramTranslator. Normal users
        don't have to call this method.

        Returns:
            ProgramCache: ProgramCache instance of ProgramTranslator.

        Examples:
            .. code-block:: python
1724

1725
                >>> import paddle
1726

1727 1728
                >>> prog_trans = paddle.jit.dy2static.program_translator.ProgramTranslator()
                >>> prog_cache = prog_trans.get_program_cache()
1729
        """
1730
        return self._program_cache
R
Ryan 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746


def enable_to_static(enable_to_static_bool):
    """
    Enable or disable the converting from imperative to static graph by
    ProgramTranslator globally.

    Args:
        enable_to_static_bool (bool): True or False to enable or disable converting to static.

    Returns:
        None.

    Examples:
        .. code-block:: python

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
            >>> import paddle
            >>> @paddle.jit.to_static
            >>> def func(x):
            ...     if paddle.mean(x) > 0:
            ...         x_v = x - 1
            ...     else:
            ...         x_v = x + 1
            ...     return x_v
            ...
            >>> paddle.jit.enable_to_static(False)

            >>> x = paddle.ones([1, 2])
            >>> # ProgramTranslator is disabled so the func is run in dygraph
            >>> print(func(x))
            Tensor(shape=[1, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 0.]])
R
Ryan 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

    """
    check_type(
        enable_to_static_bool,
        "enable_to_static_bool",
        bool,
        "paddle.jit.enable_to_static",
    )
    _program_trans = ProgramTranslator()
    _program_trans.enable(enable_to_static_bool)
1773 1774 1775


@switch_to_static_graph
1776 1777 1778 1779 1780 1781 1782
def _to_prim(
    blocks,
    blacklist=frozenset(),
    whitelist=frozenset(),
    start_idx=-1,
    backward_length=-1,
):
1783
    """Swith to static graph and call to_prim."""
1784 1785 1786
    # TODO(Aurelius84): Fix this cycle import problem
    from paddle.incubate.autograd import primapi

1787 1788 1789 1790 1791 1792 1793
    primapi.to_prim(
        blocks,
        blacklist=blacklist,
        whitelist=whitelist,
        start_idx=start_idx,
        backward_length=backward_length,
    )