activation_op.cc 48.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/platform/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
using paddle::framework::Tensor;

35 36 37 38 39
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

40 41 42 43 44
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
45 46 47 48 49
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
50 51 52 53 54 55 56 57 58
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
59
  }
D
dzhwinter 已提交
60

H
hong 已提交
61 62
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
63
 public:
H
hong 已提交
64
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
65 66

 protected:
67
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
68 69 70 71
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
72

A
Adam 已提交
73 74
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
75 76 77
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
H
hong 已提交
78
      op->SetInput("X", this->Input("X"));
79 80 81 82
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
83
      op->SetInput("Out", this->Output("Out"));
84
    }
D
dzhwinter 已提交
85
  }
86
};
D
dzhwinter 已提交
87

88 89 90 91
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
92
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
93
  auto data_type = oper.IndicateVarDataType(ctx, name);
94 95 96 97 98 99 100 101 102 103
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
104 105 106
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
107
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
108
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
109
    layout = framework::DataLayout::kMKLDNN;
110 111
  }
#endif
112
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
113 114
}

Q
qijun 已提交
115 116 117 118
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

119
  void InferShape(framework::InferShapeContext* ctx) const override {
120
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
121
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
122
  }
123

124
 protected:
125 126 127 128
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
129 130
};

C
chengduo 已提交
131 132 133
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
134
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
135
      const override {
136 137
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
138 139 140
  }
};

Q
qijun 已提交
141 142 143 144
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

145
  void InferShape(framework::InferShapeContext* ctx) const override {
146 147 148
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
149
  }
150

151
 protected:
152 153
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
154
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
155
  }
Q
qijun 已提交
156 157
};

D
dzhwinter 已提交
158
UNUSED constexpr char SigmoidDoc[] = R"DOC(
159
Sigmoid Activation Operator
K
Kexin Zhao 已提交
160

161
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
162

D
dzhwinter 已提交
163
)DOC";
Q
qijun 已提交
164

D
dzhwinter 已提交
165
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
166
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
167

168
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
169

D
dzhwinter 已提交
170
)DOC";
171

D
dzhwinter 已提交
172
UNUSED constexpr char ExpDoc[] = R"DOC(
173
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
174

175
$$out = e^x$$
K
Kexin Zhao 已提交
176

D
dzhwinter 已提交
177
)DOC";
Q
qijun 已提交
178

D
dzhwinter 已提交
179
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
180
Relu Activation Operator.
K
Kexin Zhao 已提交
181

182
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
183

D
dzhwinter 已提交
184
)DOC";
K
Kexin Zhao 已提交
185

D
dzhwinter 已提交
186
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
187
Tanh Activation Operator.
K
Kexin Zhao 已提交
188

Q
update  
qiaolongfei 已提交
189
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
190

D
dzhwinter 已提交
191
)DOC";
192

D
dzhwinter 已提交
193
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
194
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
195

Y
Yan Chunwei 已提交
196
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
197

D
dzhwinter 已提交
198
)DOC";
K
Kexin Zhao 已提交
199

D
dzhwinter 已提交
200
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
201
Sqrt Activation Operator.
K
Kexin Zhao 已提交
202

N
Noel 已提交
203
$$out=\\sqrt{x}=x^{1/2}$$
204

205 206
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
207

D
dzhwinter 已提交
208
)DOC";
209

Z
zhoukunsheng 已提交
210 211 212 213 214
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

215
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
216 217 218

)DOC";

D
dzhwinter 已提交
219
UNUSED constexpr char CeilDoc[] = R"DOC(
220
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
221

N
Noel 已提交
222
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
223

D
dzhwinter 已提交
224
)DOC";
D
dzhwinter 已提交
225

D
dzhwinter 已提交
226
UNUSED constexpr char FloorDoc[] = R"DOC(
227
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
228

N
Noel 已提交
229
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
230

D
dzhwinter 已提交
231
)DOC";
D
dzhwinter 已提交
232

D
dzhwinter 已提交
233
UNUSED constexpr char CosDoc[] = R"DOC(
234
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
235

Y
Yang Zhang 已提交
236 237
Input range is `(-inf, inf)` and output range is `[-1,1]`.

238
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
239

D
dzhwinter 已提交
240
)DOC";
C
add cos  
chengduoZH 已提交
241

J
joejiong 已提交
242 243 244 245 246 247 248 249 250
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
251
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
252 253
Sine Activation Operator.

254
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
255

D
dzhwinter 已提交
256
)DOC";
C
add sin  
chengduoZH 已提交
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
272
UNUSED constexpr char RoundDoc[] = R"DOC(
273
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
274

N
Noel 已提交
275
.. code-block:: text
276 277 278 279 280 281 282 283

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
284

D
dzhwinter 已提交
285
)DOC";
D
dzhwinter 已提交
286

D
dzhwinter 已提交
287
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
288
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
289

290
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
291

D
dzhwinter 已提交
292
)DOC";
293

D
dzhwinter 已提交
294
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
295
Log Activation Operator.
K
Kexin Zhao 已提交
296

297
$$out = \ln(x)$$
K
Kexin Zhao 已提交
298 299 300

Natural logarithm of x.

D
dzhwinter 已提交
301 302
)DOC";

J
joejiong 已提交
303 304 305 306 307 308 309 310 311
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
312 313 314 315 316 317 318 319 320
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

321 322 323 324 325 326 327 328 329
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
330
UNUSED constexpr char SquareDoc[] = R"DOC(
331
The OP square each elements of the inputs.
D
dzhwinter 已提交
332

333
$$out = x^2$$
334

D
dzhwinter 已提交
335 336
)DOC";

D
dzhwinter 已提交
337
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
338 339
Softsign Activation Operator.

340
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
341 342 343

)DOC";

T
tink2123 已提交
344 345 346 347 348 349
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
350
Arccosine Operator.
351

T
tink2123 已提交
352
$$out = \cos^{-1}(x)$$
353

T
tink2123 已提交
354 355 356
)DOC");
  }
};
357

T
tink2123 已提交
358 359 360
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
361 362 363
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
364 365
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
366
Arcsine Operator.
367

T
tink2123 已提交
368
$$out = \sin^{-1}(x)$$
369

T
tink2123 已提交
370 371 372
)DOC");
  }
};
373

T
tink2123 已提交
374 375 376
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
377 378 379
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
380 381
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
382
Arctangent Operator.
383

384
$$out = \tan^{-1}(x)$$
385

T
tink2123 已提交
386 387 388
)DOC");
  }
};
389

D
dzhwinter 已提交
390
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
391
 public:
Y
Yu Yang 已提交
392
  void Make() override {
W
Wilber 已提交
393 394 395 396 397 398 399 400
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
401 402 403
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
404
    AddComment(R"DOC(
D
dzhwinter 已提交
405
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
406

W
Wilber 已提交
407
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
408 409

)DOC");
410 411 412
  }
};

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
        .SetDefault(false);
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
        .SetDefault(false);
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
443
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
444
 public:
Y
Yu Yang 已提交
445
  void Make() override {
D
dzhwinter 已提交
446 447 448
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
449
    AddComment(R"DOC(
450 451 452
:strong:`Softshrink Activation Operator`

..  math::
453
    out = \begin{cases}
454 455 456 457
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
458 459

)DOC");
K
kexinzhao 已提交
460 461 462
  }
};

D
dzhwinter 已提交
463
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
464
 public:
Y
Yu Yang 已提交
465
  void Make() override {
D
dzhwinter 已提交
466 467
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
468 469
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
470
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
471
    AddComment(R"DOC(
Y
yuyang18 已提交
472
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
473

Y
yuyang18 已提交
474 475 476 477 478 479
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
480 481

)DOC");
482 483 484
  }
};

485 486
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
487
  void Make() override {
488 489 490 491 492 493
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
494 495 496 497
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
498
    AddComment(R"DOC(
K
kexinzhao 已提交
499
BRelu Activation Operator.
K
Kexin Zhao 已提交
500

501
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
502 503

)DOC");
504 505 506 507 508
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
509
  void Make() override {
510
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
511
    AddOutput("Out", "Output of SoftRelu operator");
512 513
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
514
    AddComment(R"DOC(
K
kexinzhao 已提交
515
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
516

517
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
518 519

)DOC");
520 521 522
  }
};

523 524
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
525
  void Make() override {
526 527 528 529 530 531
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
532
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
533
    AddComment(R"DOC(
K
kexinzhao 已提交
534
ELU Activation Operator.
K
Kexin Zhao 已提交
535 536 537 538

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

539
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
540 541

)DOC");
542 543 544
  }
};

545 546
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
547
  void Make() override {
Z
zhupengyang 已提交
548 549 550 551 552 553 554 555
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
556
        .SetDefault(6.0f);
A
Adam 已提交
557 558 559
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
560
    AddComment(R"DOC(
K
kexinzhao 已提交
561
Relu6 Activation Operator.
K
Kexin Zhao 已提交
562

563
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
564 565

)DOC");
566 567 568
  }
};

569 570
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
571
  void Make() override {
572
    AddInput("X", "Input of Pow operator");
573 574 575 576 577
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
578
    AddOutput("Out", "Output of Pow operator");
579
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
580
    AddComment(R"DOC(
K
kexinzhao 已提交
581
Pow Activation Operator.
K
Kexin Zhao 已提交
582

583
$$out = x^{factor}$$
K
Kexin Zhao 已提交
584 585

)DOC");
586 587 588 589 590
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
591
  void Make() override {
592 593
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
594
             " A Tensor with type float32, float64.");
595 596 597
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
598 599
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
600
    AddComment(R"DOC(
K
kexinzhao 已提交
601
STanh Activation Operator.
K
Kexin Zhao 已提交
602

Y
Yan Chunwei 已提交
603
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
604 605

)DOC");
Q
qijun 已提交
606 607 608
  }
};

609 610
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
611
  void Make() override {
612
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
613
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
614 615
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
616
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
617
    AddComment(R"DOC(
Y
yuyang18 已提交
618
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
619

Y
yuyang18 已提交
620
..  math::
K
Kexin Zhao 已提交
621

Y
yuyang18 已提交
622
    out = \begin{cases}
Y
yuyang18 已提交
623
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
624 625
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
626
)DOC");
627 628 629
  }
};

630 631
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
632
  void Make() override {
633 634 635 636 637
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
638
        .SetDefault(0.2f);
639 640 641
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
642
        .SetDefault(0.5f);
643
    AddComment(R"DOC(
K
kexinzhao 已提交
644
HardSigmoid Activation Operator.
645

646
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
647
which is much faster than sigmoid.
648

649
$$out = \max(0, \min(1, slope * x + offset))$$
650

K
Kexin Zhao 已提交
651
)DOC");
652 653 654
  }
};

A
Abhinav Arora 已提交
655 656
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
657
  void Make() override {
A
Abhinav Arora 已提交
658
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
659
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
660
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
661 662 663
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
A
Abhinav Arora 已提交
664 665 666
    AddComment(R"DOC(
Swish Activation Operator.

667
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
668 669 670 671 672

)DOC");
  }
};

H
huangjun12 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

689
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
690 691 692 693 694 695 696 697 698

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
699 700 701 702 703 704 705
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
706
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
707 708 709
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
710
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
711
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
712 713
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
714 715 716
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
717
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
718
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
719
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
720 721 722
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

723
template <ActBwdOpFwdDeps kDepValue>
724 725 726 727 728
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
729
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
730
      if (ctx->HasOutput("DX")) {
731 732 733
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
734
      if (ctx->HasOutput("DDOut")) {
735 736 737
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
738
    }
739
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
740
      if (ctx->HasOutput("DOut")) {
741 742 743
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
772 773 774
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
775 776 777 778 779 780 781 782 783 784
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

785 786
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
787 788
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
789
 public:
H
hong 已提交
790
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
791 792

 protected:
793
  void Apply(GradOpPtr<T> op) const override {
794 795
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
796
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
797
    // input2: ddx
H
hong 已提交
798 799
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
800
    // output: ddy
H
hong 已提交
801
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
802 803 804
  }
};

805 806
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
807
template <typename T>
808
class LeakyReluDoubleGradMaker
H
hong 已提交
809
    : public ::paddle::framework::SingleGradOpMaker<T> {
810
 public:
H
hong 已提交
811
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
812 813

 protected:
814
  void Apply(GradOpPtr<T> op) const override {
815
    op->SetType("leaky_relu_grad_grad");
816 817
    // input1: X
    op->SetInput("X", this->Input("X"));
818
    // X@GRAD@GRAD: ddx
H
hong 已提交
819 820
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
821
    // Out@GRAD@GRAD: ddy
H
hong 已提交
822
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
823 824 825
  }
};

D
Double_V 已提交
826 827 828 829 830 831 832 833
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
834
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
849 850
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
851 852
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
853
 public:
H
hong 已提交
854
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
855 856

 protected:
857
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
858
    op->SetType("sqrt_grad_grad");
H
hong 已提交
859 860 861 862 863 864
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
865 866 867
  }
};

W
whs 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

887 888
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
889 890
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
891
 public:
H
hong 已提交
892
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
893 894

 protected:
895
  void Apply(GradOpPtr<T> op) const override {
896
    op->SetType("square_grad_grad");
H
hong 已提交
897
    op->SetInput("X", this->Input("X"));
898
    // Out@GRAD: dy
H
hong 已提交
899
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
900
    // X@GRAD@GRAD: ddx
H
hong 已提交
901
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
902

H
hong 已提交
903
    op->SetAttrMap(this->Attrs());
904 905

    // X@GRAD: dx
H
hong 已提交
906
    op->SetOutput("DX", this->InputGrad("X"));
907
    // Out@GRAD@GRAD: ddy
H
hong 已提交
908
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
909 910 911
  }
};

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

934
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
935 936
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
937
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
938
                           {"DDX", "DDOut"});
939

H
hong 已提交
940 941
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
942
 public:
H
hong 已提交
943
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
944 945

 protected:
946
  void Apply(GradOpPtr<T> op) const override {
947
    op->SetType("pow_grad");
H
hong 已提交
948 949 950 951 952
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
1007
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1008 1009 1010 1011
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1012
namespace plat = paddle::platform;
1013

1014 1015 1016 1017
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1018 1019 1020 1021
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1022
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1023
                       ops::ActFwdInplaceInferer, void>::type);             \
1024
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
1025
                    ops::ActivationGradOpInplaceInferer);
1026 1027 1028

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
1039
                                ops::grad_functor<double>>);
1040

1041 1042
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1043

1044
/* ==========================    relu register  ============================= */
1045 1046
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1047 1048 1049 1050
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1051
    ops::ActFwdInplaceInferer);
1052
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
1053
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1054 1055
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1056 1057
REGISTER_OPERATOR(
    relu_grad_grad,
1058
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1059
    ops::ActivationDoubleGradOpInplaceInferer);
1060

1061
REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluCPUFunctor, ReluGradFunctor);
1062 1063 1064 1065 1066 1067 1068 1069 1070

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
1071
/* ========================================================================== */
1072

1073
/* ======================== leaky relu register  ============================ */
1074 1075 1076
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1077 1078 1079 1080
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1081
    ops::ActFwdInplaceInferer);
1082
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1083
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1084 1085
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1086 1087
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1088
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1089
    ops::ActivationDoubleGradOpInplaceInferer);
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1101 1102
/* ========================================================================== */

D
Double_V 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1112
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1113 1114 1115 1116 1117
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1118
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1131 1132 1133
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1134 1135 1136 1137
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1138
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1139
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1140
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1141 1142
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1143 1144
REGISTER_OPERATOR(
    sqrt_grad_grad,
1145
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1146
    ops::ActivationDoubleGradOpInplaceInferer);
1147

L
lvmengsi 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

W
whs 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
    rsqrt, ops::ActivationOp, ops::RsqrtOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(rsqrt_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1187 1188 1189 1190
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1191 1192 1193 1194
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1195
    ops::ActFwdInplaceInferer);
1196
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1197
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1198 1199
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1200 1201
REGISTER_OPERATOR(
    square_grad_grad,
1202
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1203
    ops::ActivationDoubleGradOpInplaceInferer);
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1223 1224 1225 1226 1227 1228 1229 1230

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1231 1232 1233 1234 1235
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1236
/* ========================================================================== */
1237 1238 1239 1240 1241

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1242 1243
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1244
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1245
                     ops::ActFwdInplaceInferer, void>::type);
1246
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1247
                  ops::ActivationGradOpInplaceInferer);
1248 1249 1250

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1251 1252 1253
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1254 1255 1256
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1272
                  ops::ActivationGradOpInplaceInferer);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
    log, ops::ActivationOp, ops::LogOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(log_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(log, Log, LogFunctor, LogGradFunctor);

REGISTER_OP_CPU_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
REGISTER_OP_VERSION(softplus)
    .AddCheckpoint(
        R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("beta", "The beta value of the new formula", 1.0f)
            .NewAttr("threshold", "The threshold value of the new formula",
                     20.0f));

1352
/* ========================================================================== */