adam.py 32.4 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
18
from ..fluid.framework import Variable, _in_legacy_dygraph, in_dygraph_mode
19 20 21 22
from ..fluid import layers
from ..fluid import unique_name
from ..fluid.layer_helper import LayerHelper
import warnings
W
WangXi 已提交
23
from ..fluid.dygraph import base as imperative_base
24
from collections import defaultdict
25 26
import numpy as np
import time
M
MRXLT 已提交
27

28
import paddle
29
from paddle import _C_ops, _legacy_C_ops
30

31 32
__all__ = []

M
MRXLT 已提交
33 34

class Adam(Optimizer):
35
    r"""
M
MRXLT 已提交
36 37 38 39
    The Adam optimizer uses an optimization described at the end
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
40

M
MRXLT 已提交
41 42 43 44 45 46
    The parameter ``param_out`` update rule with gradient ``grad``:

    .. math::

        t & = t + 1

47
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
M
MRXLT 已提交
48

49
        moment\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
50

51 52
        learning\_rate & = learning\_rate * \
                          \frac{\sqrt{1 - {\beta}_2^t}}{1 - {\beta}_1^t}
M
MRXLT 已提交
53

54
        param\_out & = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
M
MRXLT 已提交
55 56 57 58

    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

    Args:
59 60
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
M
MRXLT 已提交
61 62 63 64 65 66
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
67 68
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Tensor with shape [1] and data type as float32.
M
MRXLT 已提交
69
            The default value is 1e-08.
70 71 72 73 74 75 76 77 78 79 80 81 82
	parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
	    This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
	    The default value is None in static mode, at this time all parameters will be updated.
	weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
	    It canbe a float value as coeff of L2 regularization or \
	    :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
	    If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
	    the regularization setting here in optimizer will be ignored for this parameter. \
	    Otherwise, the regularization setting here in optimizer will take effect. \
	    Default None, meaning there is no regularization.
83 84 85
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
86 87 88 89 90 91 92 93
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
94
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
Z
zhangbo9674 已提交
95
        use_multi_tensor (bool, optional): Whether to use multi-tensor strategy to update all parameters at once . Default is false.
96 97 98
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
99 100 101 102 103 104 105

    Examples:
        .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(10, 10)
106
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
            out.backward()
            adam.step()
            adam.clear_grad()

        .. code-block:: python

            # Adam with beta1/beta2 as Tensor and weight_decay as float
            import paddle

            linear = paddle.nn.Linear(10, 10)
121
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
                beta1=0.9)                   
            out.backward()
            adam.step()
            adam.clear_grad()

M
MRXLT 已提交
160 161 162 163 164 165
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        lazy_mode=False,
        multi_precision=False,
        use_multi_tensor=False,
        name=None,
    ):
M
MRXLT 已提交
180 181 182 183
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
184 185 186
        if not isinstance(beta1, Variable):
            if not 0 <= beta1 < 1:
                raise ValueError(
187 188
                    "Invaild value of beta1, expect beta1 in [0,1)."
                )
189 190 191
        if not isinstance(beta2, Variable):
            if not 0 <= beta2 < 1:
                raise ValueError(
192 193
                    "Invaild value of beta2, expect beta2 in [0,1)."
                )
194 195 196
        if not isinstance(epsilon, Variable):
            if not 0 <= epsilon:
                raise ValueError(
197 198 199 200 201 202 203 204 205
                    "Invaild value of epsilon, expect epsilon >= 0."
                )
        super(Adam, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
206 207 208 209 210
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
211 212
        self._multi_precision = multi_precision
        self._master_weights = {}
213 214 215 216 217 218
        self._default_dict = {
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lazy_mode': lazy_mode,
        }
219

Z
zhangbo9674 已提交
220 221
        self._use_multi_tensor = use_multi_tensor
        if self._use_multi_tensor:
222 223 224 225 226 227 228
            self._param_dict = self._create_multi_tensor_dict()
            self._moment1_dict = self._create_multi_tensor_dict()
            self._moment2_dict = self._create_multi_tensor_dict()
            self._beta1_pow_acc_dict = self._create_multi_tensor_dict()
            self._beta2_pow_acc_dict = self._create_multi_tensor_dict()
            self._master_weight_dict = self._create_multi_tensor_dict()
            self._master_weight_dict['FP32_LODTensor'] = None
Z
zhangbo9674 已提交
229

230
    def _create_master_weight(self, param):
231 232 233 234 235 236 237
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
238 239 240 241 242 243 244
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
245
            block = self.helper.startup_program.global_block()
246 247 248 249 250 251 252 253 254
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
255
            self._master_weights[param.name] = var
256 257 258 259 260 261 262 263 264 265 266 267
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
268 269 270 271 272 273
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
274
        target_name = target_param.name
275 276 277 278
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
279 280
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
281 282 283
                    name, target_name
                )
            )
284 285 286 287
        return self._accumulators[name][target_name]

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
288 289 290 291
        if (
            acc_dtype == core.VarDesc.VarType.FP16
            or acc_dtype == core.VarDesc.VarType.BF16
        ):
292 293 294 295 296 297 298
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
299 300 301
            fill_value=0.9
            if isinstance(self._beta1, Variable)
            else self._beta1,
302
            shape=[1],
303 304 305
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
306 307 308 309
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
310 311 312
            fill_value=0.999
            if isinstance(self._beta2, Variable)
            else self._beta2,
313
            shape=[1],
314 315 316
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
M
MRXLT 已提交
317 318 319

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
320 321
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)
M
MRXLT 已提交
322 323 324

        # Create accumulator tensors for first and second moments
        for p in parameters:
325 326 327 328
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
                continue
329 330 331 332
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
333 334
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
335
                    "Consider using multi_precision=True option of the Adam optimizer."
336 337
                )
            self._add_moments_pows(p)
M
MRXLT 已提交
338 339 340

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
341 342
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
M
MRXLT 已提交
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
M
MRXLT 已提交
365 366 367
        lr = self._create_param_lr(param_and_grad)
        # create the adam optimize op

C
chentianyu03 已提交
368 369 370
        if framework.in_dygraph_mode():
            found_inf = self._get_auxiliary_var('found_inf')

371 372 373 374 375 376 377 378 379 380
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
C
chentianyu03 已提交
381

382
            _, _, _, _, _, _ = _C_ops.adam_(
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                found_inf,
                _beta1,
                _beta2,
                self._epsilon,
                self._lazy_mode,
                1000,
                find_master,
                False,
            )
C
chentianyu03 已提交
400 401 402 403

            return None

        if framework._in_legacy_dygraph():
404

405 406 407 408 409 410 411 412 413 414
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
415
            _, _, _, _, _, _ = _legacy_C_ops.adam(
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'multi_precision',
                find_master,
            )
M
MRXLT 已提交
443 444 445 446 447 448 449 450 451 452

            return None

        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "LearningRate": [lr],
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
453
            "Beta2Pow": [beta2_pow_acc],
M
MRXLT 已提交
454 455 456 457 458 459 460 461 462 463
        }
        outputs = {
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
464
            "min_row_size_to_use_multithread": 1000,
465
            "multi_precision": find_master,
M
MRXLT 已提交
466 467 468 469 470 471 472 473 474 475
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
476 477 478 479
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
M
MRXLT 已提交
480

481 482 483 484
        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

485 486 487 488 489 490 491
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
M
MRXLT 已提交
492 493

        return adam_op
494

W
WangXi 已提交
495
    @imperative_base.no_grad
496 497 498 499
    @framework.dygraph_only
    def step(self):
        """
        Execute the optimizer and update parameters once.
500

501 502 503 504 505 506 507
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
508

509
                a = paddle.rand([2,13], dtype="float32")
510 511
                linear = paddle.nn.Linear(13, 5)
                # This can be any optimizer supported by dygraph.
512
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
513 514 515 516 517 518
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
519 520 521 522 523 524 525
        if not isinstance(self._parameter_list[0], dict):
            params_grads = []
            for param in self._parameter_list:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
526
                    if in_dygraph_mode():
527 528 529 530 531
                        if (
                            hasattr(grad_var, "is_selected_rows")
                            and grad_var.is_selected_rows()
                            and self.regularization is not None
                        ):
532 533 534 535
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
                    else:
536 537 538 539 540
                        if (
                            hasattr(grad_var, "_is_sparse")
                            and grad_var._is_sparse()
                            and self.regularization is not None
                        ):
541 542 543
                            raise RuntimeError(
                                "Adam don't support weight_decay with sparse parameters, please set it to None."
                            )
544 545
                    params_grads.append((param, grad_var))

546 547 548 549 550 551
            optimize_ops = self._apply_optimize(
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
            )
552 553
        else:
            # optimize parameters in groups
554
            for idx, param_group in enumerate(self._param_groups):
555 556 557 558 559 560 561 562
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
563 564 565 566 567 568 569 570
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
                )
571

572
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
Z
zhangbo9674 已提交
573 574 575 576 577 578 579 580 581 582 583
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.
        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        self._create_accumulators(target_block, parameters)
        for param in parameters:
            moment1 = self._get_accumulator(self._moment1_acc_str, param)
            moment2 = self._get_accumulator(self._moment2_acc_str, param)
584 585 586 587 588 589
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param
            )
Z
zhangbo9674 已提交
590 591

            if param.dtype == paddle.float32:
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
                self._param_dict['FP32_LODTensor'][param_group_idx].append(
                    param
                )
                self._moment1_dict['FP32_LODTensor'][param_group_idx].append(
                    moment1
                )
                self._moment2_dict['FP32_LODTensor'][param_group_idx].append(
                    moment2
                )
                self._beta1_pow_acc_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(beta2_pow_acc)
Z
zhangbo9674 已提交
607
            elif param.dtype == paddle.float16:
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
                self._param_dict['FP16_LODTensor'][param_group_idx].append(
                    param
                )
                self._moment1_dict['FP16_LODTensor'][param_group_idx].append(
                    moment1
                )
                self._moment2_dict['FP16_LODTensor'][param_group_idx].append(
                    moment2
                )
                self._beta1_pow_acc_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(beta1_pow_acc)
                self._beta2_pow_acc_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(beta2_pow_acc)
Z
zhangbo9674 已提交
623
                if self._multi_precision:
624 625 626
                    self._master_weight_dict['FP16_LODTensor'][
                        param_group_idx
                    ].append(self._master_weights[param.name])
Z
zhangbo9674 已提交
627 628 629 630 631 632 633
                else:
                    self._master_weight_dict['FP16_LODTensor'] = None
            else:
                raise ValueError(
                    "Now multi_tensor_momentum only support fp32 and fp16 parameters and grad is LOD_TENSOR."
                )

634 635 636 637 638 639 640
    def _append_optimize_multi_tensor_op(
        self,
        target_block,
        parameters_and_grads,
        param_group_idx,
    ):
        """
Z
zhangbo9674 已提交
641 642 643 644 645 646 647 648 649 650 651 652
        For Multi Tensor, append optimize merged_operator to block.
        """
        assert isinstance(target_block, framework.Block)

        grad_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
        lr_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

        if isinstance(parameters_and_grads, list):
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
653 654 655 656 657
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
658 659 660
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
661 662 663 664 665
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
666 667 668 669 670 671 672 673 674 675
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)
        else:
            for param_and_grad in parameters_and_grads['params']:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    param_grad_dict = dict()
                    param_grad_dict['params'] = param_and_grad
676 677 678 679 680 681 682
                    param_grad_dict.update(
                        {
                            k: v
                            for k, v in parameters_and_grads.items()
                            if k != 'params'
                        }
                    )
Z
zhangbo9674 已提交
683
                    param_and_grad = self._update_param_group(param_grad_dict)
684 685 686 687 688
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
689 690 691
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
692 693 694 695 696
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
Z
zhangbo9674 已提交
697 698 699 700 701 702
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)

        multi_tensor_list = ['FP32_LODTensor', 'FP16_LODTensor']
        for key in multi_tensor_list:
703
            if len(self._param_dict[key][param_group_idx]) > 0:
704
                find_master = self._multi_precision and key == 'FP16_LODTensor'
Z
zhangbo9674 已提交
705

706 707 708 709 710 711 712 713 714 715
                _beta1 = (
                    self._beta1
                    if not isinstance(self._beta1, Variable)
                    else self._beta1.numpy().item(0)
                )
                _beta2 = (
                    self._beta2
                    if not isinstance(self._beta2, Variable)
                    else self._beta2.numpy().item(0)
                )
Z
zhangbo9674 已提交
716

J
Jiabin Yang 已提交
717
                if framework._non_static_mode():
718 719 720 721 722 723
                    master_weight = self._master_weight_dict[key]
                    master_weight = (
                        master_weight[param_group_idx]
                        if master_weight is not None
                        else None
                    )
724
                    if in_dygraph_mode():
725

726
                        _, _, _, _, _, _ = _C_ops.merged_adam_(
727 728 729 730 731 732 733 734 735 736 737 738 739 740
                            self._param_dict[key][param_group_idx],
                            grad_dict[key],
                            lr_dict[key],
                            self._moment1_dict[key][param_group_idx],
                            self._moment2_dict[key][param_group_idx],
                            self._beta1_pow_acc_dict[key][param_group_idx],
                            self._beta2_pow_acc_dict[key][param_group_idx],
                            master_weight,
                            _beta1,
                            _beta2,
                            self._epsilon,
                            find_master,
                            False,
                        )
741 742
                    else:
                        _, _, _, _, _, _ = _legacy_C_ops.merged_adam(
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
                            self._param_dict[key][param_group_idx],
                            grad_dict[key],
                            lr_dict[key],
                            self._moment1_dict[key][param_group_idx],
                            self._moment2_dict[key][param_group_idx],
                            self._beta1_pow_acc_dict[key][param_group_idx],
                            self._beta2_pow_acc_dict[key][param_group_idx],
                            master_weight,
                            self._param_dict[key][param_group_idx],
                            self._moment1_dict[key][param_group_idx],
                            self._moment2_dict[key][param_group_idx],
                            self._beta1_pow_acc_dict[key][param_group_idx],
                            self._beta2_pow_acc_dict[key][param_group_idx],
                            master_weight,
                            'epsilon',
                            self._epsilon,
                            'beta1',
                            _beta1,
                            'beta2',
                            _beta2,
                            'multi_precision',
                            find_master,
                        )
Z
zhangbo9674 已提交
766 767
                else:
                    inputs = {
768
                        "Param": self._param_dict[key][param_group_idx],
Z
zhangbo9674 已提交
769 770
                        "Grad": grad_dict[key],
                        "LearningRate": lr_dict[key],
771 772 773 774 775 776 777 778
                        "Moment1": self._moment1_dict[key][param_group_idx],
                        "Moment2": self._moment2_dict[key][param_group_idx],
                        "Beta1Pow": self._beta1_pow_acc_dict[key][
                            param_group_idx
                        ],
                        "Beta2Pow": self._beta2_pow_acc_dict[key][
                            param_group_idx
                        ],
Z
zhangbo9674 已提交
779 780
                    }
                    outputs = {
781 782 783 784 785 786 787 788 789
                        "ParamOut": self._param_dict[key][param_group_idx],
                        "Moment1Out": self._moment1_dict[key][param_group_idx],
                        "Moment2Out": self._moment2_dict[key][param_group_idx],
                        "Beta1PowOut": self._beta1_pow_acc_dict[key][
                            param_group_idx
                        ],
                        "Beta2PowOut": self._beta2_pow_acc_dict[key][
                            param_group_idx
                        ],
Z
zhangbo9674 已提交
790 791 792 793
                    }
                    attrs = {
                        "epsilon": self._epsilon,
                        "beta1": _beta1,
794
                        "beta2": _beta2,
Z
zhangbo9674 已提交
795
                    }
796
                    if find_master:
797 798 799
                        inputs["MasterParam"] = self._master_weight_dict[key][
                            param_group_idx
                        ]
Z
zhangbo9674 已提交
800
                        outputs["MasterParamOut"] = self._master_weight_dict[
801 802
                            key
                        ][param_group_idx]
803
                        attrs["multi_precision"] = find_master
804 805 806 807 808 809 810
                    target_block.append_op(
                        type="merged_adam",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
Z
zhangbo9674 已提交
811 812
        return None

813 814 815 816
    def _update_param_group(self, parameters):
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
817 818 819
        self._lazy_mode = parameters.get(
            'lazy_mode', self._default_dict['lazy_mode']
        )
820 821
        parameters = parameters.get('params')
        return parameters