test_pylayer_op.py 23.3 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18 19
import numpy as np

import paddle
20
from paddle.autograd.py_layer import EagerPyLayer, LegacyPyLayer
21
from paddle.fluid.framework import in_dygraph_mode
22 23


24 25 26 27 28
class FakeTensor(paddle.fluid.core.VarBase):
    def __init__(self):
        pass


29
class TestPyLayer(unittest.TestCase):
30
    def test_simple_pylayer_multiple_output(self):
31
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
32 33 34 35 36 37
            @staticmethod
            def forward(ctx, x1, x2, func1, func2=paddle.square):
                ctx.func = func2
                y1 = func1(x1)
                y2 = func1(x2)
                ctx.save_for_backward(y1, y2)
W
WeiXin 已提交
38
                return y1, 1, y2, None
39 40 41 42 43 44 45 46 47 48 49 50 51

            @staticmethod
            def backward(ctx, dy1, dy2):
                y1, y2 = ctx.saved_tensor()
                re1 = dy1 * (1 - ctx.func(y1))
                re2 = dy2 * (1 - paddle.square(y2))
                return re1, re2

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z = tanh.apply(input1, input1, paddle.tanh, paddle.square)
W
WeiXin 已提交
52
        z = z[0] + z[2]
53 54 55 56 57
        z.mean().backward()

        z2 = paddle.tanh(input2) + paddle.tanh(input2)
        z2.mean().backward()

58
        self.assertTrue(
59 60
            np.max(np.abs((input1.grad.numpy() - input2.grad.numpy()))) < 1e-10
        )
61

62
    def test_simple_pylayer_return_none_with_no_grad(self):
63
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
64 65 66 67 68 69
            @staticmethod
            def forward(ctx, x1, x2, func1, func2=paddle.square):
                ctx.func = func2
                y1 = func1(x1)
                y2 = func1(x2)
                ctx.save_for_backward(y1, y2)
W
WeiXin 已提交
70
                return 1, None, y1, y2, ''
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

            @staticmethod
            def backward(ctx, dy1, dy2):
                y1, y2 = ctx.saved_tensor()
                re1 = dy1 * (1 - ctx.func(y1))
                re2 = dy2 * (1 - paddle.square(y2))
                return re1, None

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input3 = input1.detach().clone()
        input4 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        input3.stop_gradient = True
        input4.stop_gradient = True
        z = tanh.apply(input1, input3, paddle.tanh, paddle.square)
W
WeiXin 已提交
88
        z = z[2] + z[3]
89 90 91 92 93
        z.mean().backward()

        z2 = paddle.tanh(input2) + paddle.tanh(input4)
        z2.mean().backward()

W
WeiXin 已提交
94
        self.assertTrue(
95 96
            np.max(np.abs((input1.grad.numpy() - input2.grad.numpy()))) < 1e-10
        )
97

98
    def test_simple_pylayer_single_output(self):
99
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
100 101 102 103 104 105 106 107 108
            @staticmethod
            def forward(ctx, x1, func1, func2=paddle.square):
                ctx.func = func2
                y1 = func1(x1)
                ctx.save_for_backward(y1)
                return y1

            @staticmethod
            def backward(ctx, dy1):
109
                (y1,) = ctx.saved_tensor()
110 111 112 113 114 115 116 117 118 119 120 121
                re1 = dy1 * (1 - ctx.func(y1))
                return re1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z = tanh.apply(x1=input1, func1=paddle.tanh)
        z.mean().backward()
        z2 = paddle.tanh(input2)
        z2.mean().backward()

122
        self.assertTrue(
123 124
            np.max(np.abs((input1.grad.numpy() - input2.grad.numpy()))) < 1e-10
        )
125

126
    def test_pylayer_num_output_match(self):
127
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
W
WeiXin 已提交
128 129
            @staticmethod
            def forward(
130 131 132 133
                ctx,
                x1,
                x2,
            ):
W
WeiXin 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
                return x1 + x2

            @staticmethod
            def backward(ctx, dy1):
                return dy1 + 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z = tanh.apply(input1, input2)
        with self.assertRaises(ValueError):
            z.mean().backward()

148
    def test_pylayer_dtype(self):
149
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
150 151 152 153 154 155 156 157 158 159
            @staticmethod
            def forward(ctx, x, dtype):
                y = paddle.cast(x, dtype)
                return y

            @staticmethod
            def backward(ctx, dy1):
                return dy1

        dtypes = [
160 161 162 163 164 165 166
            'bool',
            'float16',
            'float32',
            'float64',
            'uint8',
            'int32',
            'int64',
167 168
        ]
        for dtype in dtypes:
169
            input1 = paddle.randn([2, 3])
170
            input1.stop_gradient = False
171
            self.assertIsNone(input1.grad)
172 173 174 175

            z = tanh.apply(input1, dtype)
            z = paddle.cast(z, "float32")
            z.sum().backward()
176
            self.assertIsNotNone(input1.grad)
177

178
    def test_pylayer_Exception_forward(self):
179
        class Layer_None1(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
180 181 182 183 184 185 186 187 188
            @staticmethod
            def forward(ctx, *args):
                return None

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
W
WeiXin 已提交
189
        with self.assertRaises(ValueError):
190 191
            z = Layer_None1.apply(input1)

192
        class Layer_None2(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
193 194
            @staticmethod
            def forward(ctx, *args):
W
WeiXin 已提交
195
                return [None, args[0]]
196 197 198 199 200 201

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
W
WeiXin 已提交
202 203
        # return None
        z = Layer_None2.apply(input1)
204

205
        class Layer_one1(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
206 207 208 209 210 211 212 213 214
            @staticmethod
            def forward(ctx, *args):
                return 1

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
W
WeiXin 已提交
215 216
        # At least one output of `PyLayer.backward` is a `Tensor`
        with self.assertRaises(ValueError):
217 218
            z = Layer_one1.apply(input1)

219
        class Layer_one2(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
220 221
            @staticmethod
            def forward(ctx, *args):
W
WeiXin 已提交
222
                return [1, 2, args[0]]
223 224 225 226 227 228

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
229
        # return int
W
WeiXin 已提交
230
        z = Layer_one2.apply(input1)
231

232
        class Layer_no_fw(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
233 234 235 236 237 238 239 240
            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
        with self.assertRaises(NotImplementedError):
            z = Layer_no_fw.apply(input1)

241
    def test_pylayer_nograd(self):
242
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
243 244 245 246 247 248 249 250 251 252 253 254 255 256
            @staticmethod
            def forward(ctx, x1, func1, func2=paddle.square, xx=None):
                ctx.func = func2
                y1 = func1(x1)
                return y1

            @staticmethod
            def backward(ctx, x1, y1, dy1):
                re1 = dy1 * (1 - ctx.func(y1))
                return re1

        input1 = paddle.randn([2, 3]).astype("float64")
        z = tanh.apply(input1, paddle.tanh, paddle.square)
        z.mean().backward()
257
        self.assertIsNone(z.grad)
258

259
    def test_pylayer_Exception_bk(self):
260
        class Layer_bk_none1(
261 262
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
263 264 265 266 267 268 269 270 271 272 273 274
            @staticmethod
            def forward(ctx, x):
                return x * 2

            @staticmethod
            def backward(ctx, dy1):
                return None

        input2 = paddle.randn([2, 3]).astype("float64")
        input2.stop_gradient = False
        z = Layer_bk_none1.apply(input2)

275
        with self.assertRaises(ValueError):
276
            z.sum().backward()
277

278
        class Layer_bk_none2(
279 280
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
281 282 283 284 285 286 287 288 289 290 291
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 + x2

            @staticmethod
            def backward(ctx, dy1):
                return None, dy1

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_bk_none2.apply(input1, input1)
292

293
        with self.assertRaises(ValueError):
294
            z.mean().backward()
295

296 297 298
        class Layer_bk_one1(
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
299 300 301 302 303 304 305 306 307 308 309
            @staticmethod
            def forward(ctx, x):
                return x + x

            @staticmethod
            def backward(ctx, dy):
                return 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_bk_one1.apply(input1)
310

311
        with self.assertRaises(ValueError):
312
            z.mean().backward()
313

314 315 316
        class Layer_bk_one2(
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
317
            @staticmethod
318 319
            def forward(ctx, x1, x2):
                return x1 * 2, x2 * 5
320 321 322 323 324 325 326

            @staticmethod
            def backward(ctx, *args):
                return 1, 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
327

328 329 330
        y = Layer_bk_one2.apply(input1, input1)
        z = y[0] + y[1]
        with self.assertRaises(ValueError):
331
            z.mean().backward()
332

333
        class Layer_no_bk(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
334 335 336 337 338 339 340 341
            @staticmethod
            def forward(ctx, x):
                return x * 2, x * 5

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_no_bk.apply(input1)

342 343 344
        with self.assertRaises(OSError):
            z = z[0] + z[1]
            z.mean().backward()
345

346
        class Layer_bk_match(
347 348
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
349 350 351 352 353 354 355 356 357 358 359 360
            @staticmethod
            def forward(ctx, x):
                return x * 2, x * 5

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy2 * 2, dy1 * 2

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_bk_match.apply(input1)
        with self.assertRaises(ValueError):
361 362
            z = z[0] + z[1]
            z.mean().backward()
363

364
    def test_pylayer_bk_return_none(self):
365
        class Layer_bk_none1(
366 367
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 + x2

            @staticmethod
            def backward(ctx, dy):
                return 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = True
        input2.stop_gradient = False
        z = Layer_bk_none1.apply(input1, input2)

        with self.assertRaises(ValueError):
383
            z.mean().backward()
384

385
        class Layer_bk_none2(
386 387
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 * 2, x2 * 5

            @staticmethod
            def backward(ctx, *args):
                return 1, 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = True
        input2.stop_gradient = False
        z = Layer_bk_none2.apply(input1, input2)
        z = z[0] + z[1]
        with self.assertRaises(ValueError):
403
            z.mean().backward()
404

405
    def test_pylayer_inplace(self):
406
        class cus_tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
407 408
            @staticmethod
            def forward(ctx, x):
409
                return x
410 411 412 413 414

            @staticmethod
            def backward(ctx, dy):
                return dy

415 416
        class Layer(paddle.nn.Layer):
            def __init__(self):
417
                super().__init__()
418 419

            def forward(self, data):
420
                data = data**2
421 422 423 424
                z = paddle.tanh(data)
                z = cus_tanh.apply(data)
                return z.mean()

425 426 427
        for i in range(2):
            data = paddle.ones([2, 3], dtype="float64") / (i + 1)
            data.stop_gradient = False
428 429 430
            layer = Layer()
            z = layer(data)
            z.backward()
431
            self.assertIsNotNone(data.grad)
432

433
    def test_pylayer_inplace_backward_error(self):
434 435 436 437
        class cus_tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
            @staticmethod
            def forward(ctx, x):
                return x
438

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
            @staticmethod
            def backward(ctx, dy):
                return dy

        class Layer(paddle.nn.Layer):
            def __init__(self):
                super().__init__()

            def forward(self, data):
                var_b = data**2
                var_c = var_b**2
                z = cus_tanh.apply(var_b)
                loss = paddle.nn.functional.relu(var_c)
                return loss

        data = paddle.ones([2, 3], dtype="float64")
        data.stop_gradient = False
        layer = Layer()
        z = layer(data)
        with self.assertRaisesRegexp(
            RuntimeError,
            "received tensor_version:{} != wrapper_version_snapshot:{}".format(
                1, 0
            ),
        ):
            z.backward()

    def test_pylayer_inplace_backward_success_1(self):
        class cus_tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, dy):
                return dy

        class Layer(paddle.nn.Layer):
            def __init__(self):
                super().__init__()

            def forward(self, data):
                var_b = data**2
                var_c = cus_tanh.apply(var_b)
                var_d = var_c**2
                loss = var_d.sum()
                return loss

        for i in range(2):
            data = paddle.ones([2, 3], dtype="float64") / (i + 1)
489 490 491
            data.stop_gradient = False
            layer = Layer()
            z = layer(data)
492 493
            z.backward()
            self.assertIsNotNone(data.grad)
494

495 496 497 498 499
    def test_pylayer_inplace_backward_success_2(self):
        class cus_tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
            @staticmethod
            def forward(ctx, x):
                return x
500

501 502 503
            @staticmethod
            def backward(ctx, dy):
                return dy
504

505 506 507
        class Layer(paddle.nn.Layer):
            def __init__(self):
                super().__init__()
508

509 510 511 512 513 514
            def forward(self, data):
                var_b = data**2
                var_c = cus_tanh.apply(var_b)
                var_d = var_c + var_c
                loss = var_d.sum()
                return loss
515

516 517 518 519 520 521 522 523 524
        for i in range(2):
            data = paddle.ones([2, 3], dtype="float64") / (i + 1)
            data.stop_gradient = False
            layer = Layer()
            z = layer(data)
            z.backward()
            self.assertIsNotNone(data.grad)

    def test_pylayer_inplace_and_leaf_exception(self):
525
        class cus_pylayer_op(
526 527
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
528 529 530 531 532 533 534 535 536 537
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, dy):
                return dy

        class Layer(paddle.nn.Layer):
            def __init__(self):
538
                super().__init__()
539 540 541 542 543 544 545 546 547 548 549 550 551

            def forward(self, data):
                z = cus_pylayer_op.apply(data)
                return z.mean()

        for i in range(2):
            data = paddle.ones([2, 3], dtype="float64") / (i + 1)
            data.stop_gradient = False
            layer = Layer()

            with self.assertRaises(ValueError):
                z = layer(data)

552
    def test_backward_in_backward(self):
553
        class cus_tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
554 555 556 557 558 559 560 561 562 563 564 565 566
            @staticmethod
            def forward(ctx, x):
                temp = x.detach()
                ctx.inputs = temp
                return x.mean()

            @staticmethod
            def backward(ctx, dy):
                with paddle.set_grad_enabled(True):
                    temp = ctx.inputs
                    temp.stop_gradient = False
                    z = paddle.tanh(temp)
                    z.backward()
567
                    self.assertIsNotNone(temp.grad)
568 569 570 571 572
                    return paddle.to_tensor(temp.grad)

        for i in range(2):
            data = paddle.ones([2, 3], dtype="float32") / (i + 1)
            data.stop_gradient = False
573 574 575 576
            data = paddle.nn.functional.relu(data)
            z = paddle.tanh(data)
            z = cus_tanh.apply(data)

577
    def test_return_to_tensor(self):
578
        class Tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
579 580 581 582 583 584 585 586 587
            @staticmethod
            def forward(ctx, x1):
                y1 = paddle.tanh(x1)
                ctx.save_for_backward(y1)
                tensor_1 = paddle.to_tensor([1, 2], dtype='float32')
                return y1, 5, None, "helloworld", tensor_1

            @staticmethod
            def backward(ctx, dy1, dy2):
588
                (y1,) = ctx.saved_tensor()
589 590 591 592 593 594 595 596 597 598
                re1 = dy1 * (1 - paddle.square(y1))
                return dy1

        input1 = paddle.randn([2, 3]).astype("float32")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z, number, none_item, string_item, tensor1 = Tanh.apply(x1=input1)
        z.mean().backward()

W
wanghuancoder 已提交
599
    def test_materialize_grads(self):
600 601 602 603 604
        class Tanh(EagerPyLayer):
            @staticmethod
            def forward(ctx, x):
                ctx.mark_not_inplace(x)
                return x, x + x
W
wanghuancoder 已提交
605

606 607 608 609
            @staticmethod
            def backward(ctx, grad, grad2):
                self.assertEqual(grad2, paddle.zeros([1]))
                return grad
W
wanghuancoder 已提交
610

611 612 613
        x = paddle.ones([1], dtype="float64")
        x.stop_gradient = False
        Tanh.apply(x)[0].backward()
W
wanghuancoder 已提交
614 615

    def test_dont_materialize_grads(self):
616 617 618 619 620 621
        class Tanh(EagerPyLayer):
            @staticmethod
            def forward(ctx, x):
                ctx.mark_not_inplace(x)
                ctx.set_materialize_grads(False)
                return x, x + x
W
wanghuancoder 已提交
622

623 624 625 626
            @staticmethod
            def backward(ctx, grad, grad2):
                self.assertIsNone(grad2)
                return grad
W
wanghuancoder 已提交
627

628 629 630
        x = paddle.ones([1], dtype="float64")
        x.stop_gradient = False
        Tanh.apply(x)[0].backward()
W
wanghuancoder 已提交
631 632

    def test_mark_non_differentiable(self):
633 634 635 636 637 638
        class Tanh(EagerPyLayer):
            @staticmethod
            def forward(ctx, x):
                a = x + x
                ctx.mark_non_differentiable(a)
                return a
W
wanghuancoder 已提交
639

640 641 642 643
            @staticmethod
            def backward(ctx, grad):
                self.assertTrue(False)  # should not be call
                return paddle.ones([1], dtype="float64")
W
wanghuancoder 已提交
644

645 646 647 648
        x = paddle.ones([1], dtype="float64")
        x.stop_gradient = False
        y = Tanh.apply(x)
        y.sum().backward()
W
wanghuancoder 已提交
649 650

    def test_mark_non_differentiable2(self):
651 652 653 654 655 656 657
        class Tanh(EagerPyLayer):
            @staticmethod
            def forward(ctx, x):
                a = x + x
                b = x + x + x
                ctx.mark_non_differentiable(a)
                return a, b
W
wanghuancoder 已提交
658

659 660 661 662 663
            @staticmethod
            def backward(ctx, grad_a, grad_b):
                self.assertEqual(grad_a, paddle.zeros([1]))
                self.assertEqual(grad_b, paddle.ones([1], dtype="float64"))
                return grad_b
W
wanghuancoder 已提交
664

665 666 667 668 669
        x = paddle.ones([1], dtype="float64")
        x.stop_gradient = False
        a, b = Tanh.apply(x)
        b.sum().backward()
        self.assertEqual(x.grad, paddle.ones([1], dtype="float64"))
W
wanghuancoder 已提交
670

671 672 673

class TestPyLayerReturnType(unittest.TestCase):
    def test_forward_args_fake_tensor(self):
674
        class Tanh(LegacyPyLayer):
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
            @staticmethod
            def forward(ctx, x1):
                y1 = FakeTensor()
                return y1, x1

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy1

        input1 = FakeTensor()

        with self.assertRaises(ValueError):
            y1, y2 = Tanh.apply(input1)

    def test_forward_kwargs_fake_tensor(self):
690
        class Tanh(LegacyPyLayer):
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
            @staticmethod
            def forward(ctx, x1):

                return x1

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy1

        input1 = FakeTensor()

        with self.assertRaises(ValueError):
            y = Tanh.apply(x1=input1)

    def test_forward_return_fake_tensor(self):
706
        class Tanh(LegacyPyLayer):
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
            @staticmethod
            def forward(ctx, x1):

                return FakeTensor()

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy1

        input1 = paddle.randn([3, 2])

        with self.assertRaises(ValueError):
            y = Tanh.apply(x1=input1)

    def test_forward_return_fake_tensor_tuple(self):
722
        class Tanh(LegacyPyLayer):
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
            @staticmethod
            def forward(ctx, x1):

                return FakeTensor(), FakeTensor()

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy1

        input1 = paddle.randn([3, 2])

        with self.assertRaises(ValueError):
            y = Tanh.apply(x1=input1)

    def test_backward_return_fake_tensor_tuple(self):
738
        class Tanh(LegacyPyLayer):
739 740 741 742 743 744 745 746 747 748 749 750 751
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 + 1, x1 + 2

            @staticmethod
            def backward(ctx, dy1, dy2):

                return FakeTensor(), 2

        input1 = paddle.randn([3, 2])
        input1.stop_gradient = False

        with self.assertRaises(ValueError):
752
            y, _ = Tanh.apply(input1, 1 + input1)
753 754 755
            y.mean().backward()

    def test_backward_return_fake_tensor(self):
756
        class Tanh(LegacyPyLayer):
757 758 759 760 761 762 763 764 765 766 767 768
            @staticmethod
            def forward(ctx, x1):
                return x1 + 1, x1 + 2

            @staticmethod
            def backward(ctx, dy1, dy2):
                return FakeTensor()

        input1 = paddle.randn([3, 2])
        input1.stop_gradient = False

        with self.assertRaises(ValueError):
769
            y, _ = Tanh.apply(input1)
770 771
            y.mean().backward()

772 773 774

if __name__ == '__main__':
    unittest.main()