test_pylayer_op.py 26.6 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle
19
from paddle.autograd.py_layer import LegacyPyLayer, EagerPyLayer
W
wanghuancoder 已提交
20
from paddle.fluid.framework import _test_eager_guard, in_dygraph_mode
21 22


23 24 25 26 27
class FakeTensor(paddle.fluid.core.VarBase):
    def __init__(self):
        pass


28
class TestPyLayer(unittest.TestCase):
W
wanghuancoder 已提交
29
    def func_test_simple_pylayer_multiple_output(self):
30
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
31 32 33 34 35 36
            @staticmethod
            def forward(ctx, x1, x2, func1, func2=paddle.square):
                ctx.func = func2
                y1 = func1(x1)
                y2 = func1(x2)
                ctx.save_for_backward(y1, y2)
W
WeiXin 已提交
37
                return y1, 1, y2, None
38 39 40 41 42 43 44 45 46 47 48 49 50

            @staticmethod
            def backward(ctx, dy1, dy2):
                y1, y2 = ctx.saved_tensor()
                re1 = dy1 * (1 - ctx.func(y1))
                re2 = dy2 * (1 - paddle.square(y2))
                return re1, re2

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z = tanh.apply(input1, input1, paddle.tanh, paddle.square)
W
WeiXin 已提交
51
        z = z[0] + z[2]
52 53 54 55 56
        z.mean().backward()

        z2 = paddle.tanh(input2) + paddle.tanh(input2)
        z2.mean().backward()

57
        self.assertTrue(
58 59
            np.max(np.abs((input1.grad.numpy() - input2.grad.numpy()))) < 1e-10
        )
60

W
wanghuancoder 已提交
61 62 63 64 65 66
    def test_simple_pylayer_multiple_output(self):
        with _test_eager_guard():
            self.func_test_simple_pylayer_multiple_output()
        self.func_test_simple_pylayer_multiple_output()

    def func_test_simple_pylayer_return_none_with_no_grad(self):
67
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
68 69 70 71 72 73
            @staticmethod
            def forward(ctx, x1, x2, func1, func2=paddle.square):
                ctx.func = func2
                y1 = func1(x1)
                y2 = func1(x2)
                ctx.save_for_backward(y1, y2)
W
WeiXin 已提交
74
                return 1, None, y1, y2, ''
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

            @staticmethod
            def backward(ctx, dy1, dy2):
                y1, y2 = ctx.saved_tensor()
                re1 = dy1 * (1 - ctx.func(y1))
                re2 = dy2 * (1 - paddle.square(y2))
                return re1, None

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input3 = input1.detach().clone()
        input4 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        input3.stop_gradient = True
        input4.stop_gradient = True
        z = tanh.apply(input1, input3, paddle.tanh, paddle.square)
W
WeiXin 已提交
92
        z = z[2] + z[3]
93 94 95 96 97
        z.mean().backward()

        z2 = paddle.tanh(input2) + paddle.tanh(input4)
        z2.mean().backward()

W
WeiXin 已提交
98
        self.assertTrue(
99 100
            np.max(np.abs((input1.grad.numpy() - input2.grad.numpy()))) < 1e-10
        )
101

W
wanghuancoder 已提交
102 103 104 105 106 107
    def test_simple_pylayer_return_none_with_no_grad(self):
        with _test_eager_guard():
            self.func_test_simple_pylayer_return_none_with_no_grad()
        self.func_test_simple_pylayer_return_none_with_no_grad()

    def func_test_simple_pylayer_single_output(self):
108
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
109 110 111 112 113 114 115 116 117
            @staticmethod
            def forward(ctx, x1, func1, func2=paddle.square):
                ctx.func = func2
                y1 = func1(x1)
                ctx.save_for_backward(y1)
                return y1

            @staticmethod
            def backward(ctx, dy1):
118
                (y1,) = ctx.saved_tensor()
119 120 121 122 123 124 125 126 127 128 129 130
                re1 = dy1 * (1 - ctx.func(y1))
                return re1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z = tanh.apply(x1=input1, func1=paddle.tanh)
        z.mean().backward()
        z2 = paddle.tanh(input2)
        z2.mean().backward()

131
        self.assertTrue(
132 133
            np.max(np.abs((input1.grad.numpy() - input2.grad.numpy()))) < 1e-10
        )
134

W
wanghuancoder 已提交
135 136 137 138 139 140
    def test_simple_pylayer_single_output(self):
        with _test_eager_guard():
            self.func_test_simple_pylayer_single_output()
        self.func_test_simple_pylayer_single_output()

    def func_test_pylayer_num_output_match(self):
141
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
W
WeiXin 已提交
142 143
            @staticmethod
            def forward(
144 145 146 147
                ctx,
                x1,
                x2,
            ):
W
WeiXin 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161
                return x1 + x2

            @staticmethod
            def backward(ctx, dy1):
                return dy1 + 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z = tanh.apply(input1, input2)
        with self.assertRaises(ValueError):
            z.mean().backward()

W
wanghuancoder 已提交
162 163 164 165 166 167
    def test_pylayer_num_output_match(self):
        with _test_eager_guard():
            self.func_test_pylayer_num_output_match()
        self.func_test_pylayer_num_output_match()

    def func_test_pylayer_dtype(self):
168
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
169 170 171 172 173 174 175 176 177 178
            @staticmethod
            def forward(ctx, x, dtype):
                y = paddle.cast(x, dtype)
                return y

            @staticmethod
            def backward(ctx, dy1):
                return dy1

        dtypes = [
179 180 181 182 183 184 185
            'bool',
            'float16',
            'float32',
            'float64',
            'uint8',
            'int32',
            'int64',
186 187
        ]
        for dtype in dtypes:
188
            input1 = paddle.randn([2, 3])
189 190 191 192 193 194 195 196
            input1.stop_gradient = False
            self.assertTrue(input1.grad is None)

            z = tanh.apply(input1, dtype)
            z = paddle.cast(z, "float32")
            z.sum().backward()
            self.assertTrue(input1.grad is not None)

W
wanghuancoder 已提交
197 198 199 200 201 202
    def test_pylayer_dtype(self):
        with _test_eager_guard():
            self.func_test_pylayer_dtype()
        self.func_test_pylayer_dtype()

    def func_test_pylayer_Exception_forward(self):
203
        class Layer_None1(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
204 205 206 207 208 209 210 211 212
            @staticmethod
            def forward(ctx, *args):
                return None

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
W
WeiXin 已提交
213
        with self.assertRaises(ValueError):
214 215
            z = Layer_None1.apply(input1)

216
        class Layer_None2(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
217 218
            @staticmethod
            def forward(ctx, *args):
W
WeiXin 已提交
219
                return [None, args[0]]
220 221 222 223 224 225

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
W
WeiXin 已提交
226 227
        # return None
        z = Layer_None2.apply(input1)
228

229
        class Layer_one1(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
230 231 232 233 234 235 236 237 238
            @staticmethod
            def forward(ctx, *args):
                return 1

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
W
WeiXin 已提交
239 240
        # At least one output of `PyLayer.backward` is a `Tensor`
        with self.assertRaises(ValueError):
241 242
            z = Layer_one1.apply(input1)

243
        class Layer_one2(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
244 245
            @staticmethod
            def forward(ctx, *args):
W
WeiXin 已提交
246
                return [1, 2, args[0]]
247 248 249 250 251 252

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
253
        # return int
W
WeiXin 已提交
254
        z = Layer_one2.apply(input1)
255

256
        class Layer_no_fw(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
257 258 259 260 261 262 263 264
            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
        with self.assertRaises(NotImplementedError):
            z = Layer_no_fw.apply(input1)

W
wanghuancoder 已提交
265 266 267 268 269 270
    def test_pylayer_Exception_forward(self):
        with _test_eager_guard():
            self.func_test_pylayer_Exception_forward()
        self.func_test_pylayer_Exception_forward()

    def func_test_pylayer_nograd(self):
271
        class tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
            @staticmethod
            def forward(ctx, x1, func1, func2=paddle.square, xx=None):
                ctx.func = func2
                y1 = func1(x1)
                return y1

            @staticmethod
            def backward(ctx, x1, y1, dy1):
                re1 = dy1 * (1 - ctx.func(y1))
                return re1

        input1 = paddle.randn([2, 3]).astype("float64")
        z = tanh.apply(input1, paddle.tanh, paddle.square)
        z.mean().backward()
        self.assertTrue(z.grad is None)

W
wanghuancoder 已提交
288 289 290 291 292 293
    def test_pylayer_nograd(self):
        with _test_eager_guard():
            self.func_test_pylayer_nograd()
        self.func_test_pylayer_nograd()

    def func_test_pylayer_Exception_bk(self):
294
        class Layer_bk_none1(
295 296
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
297 298 299 300 301 302 303 304 305 306 307 308
            @staticmethod
            def forward(ctx, x):
                return x * 2

            @staticmethod
            def backward(ctx, dy1):
                return None

        input2 = paddle.randn([2, 3]).astype("float64")
        input2.stop_gradient = False
        z = Layer_bk_none1.apply(input2)

309
        with self.assertRaises(ValueError):
310
            z.sum().backward()
311

312
        class Layer_bk_none2(
313 314
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
315 316 317 318 319 320 321 322 323 324 325
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 + x2

            @staticmethod
            def backward(ctx, dy1):
                return None, dy1

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_bk_none2.apply(input1, input1)
326

327
        with self.assertRaises(ValueError):
328
            z.mean().backward()
329

330 331 332
        class Layer_bk_one1(
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
333 334 335 336 337 338 339 340 341 342 343
            @staticmethod
            def forward(ctx, x):
                return x + x

            @staticmethod
            def backward(ctx, dy):
                return 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_bk_one1.apply(input1)
344

345
        with self.assertRaises(ValueError):
346
            z.mean().backward()
347

348 349 350
        class Layer_bk_one2(
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
351
            @staticmethod
352 353
            def forward(ctx, x1, x2):
                return x1 * 2, x2 * 5
354 355 356 357 358 359 360

            @staticmethod
            def backward(ctx, *args):
                return 1, 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
361

362 363 364
        y = Layer_bk_one2.apply(input1, input1)
        z = y[0] + y[1]
        with self.assertRaises(ValueError):
365
            z.mean().backward()
366

367
        class Layer_no_bk(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
368 369 370 371 372 373 374 375
            @staticmethod
            def forward(ctx, x):
                return x * 2, x * 5

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_no_bk.apply(input1)

376 377 378
        with self.assertRaises(OSError):
            z = z[0] + z[1]
            z.mean().backward()
379

380
        class Layer_bk_match(
381 382
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
383 384 385 386 387 388 389 390 391 392 393 394
            @staticmethod
            def forward(ctx, x):
                return x * 2, x * 5

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy2 * 2, dy1 * 2

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_bk_match.apply(input1)
        with self.assertRaises(ValueError):
395 396
            z = z[0] + z[1]
            z.mean().backward()
397

W
wanghuancoder 已提交
398 399 400 401 402 403
    def test_pylayer_Exception_bk(self):
        with _test_eager_guard():
            self.func_test_pylayer_Exception_bk()
        self.func_test_pylayer_Exception_bk()

    def func_test_pylayer_bk_return_none(self):
404
        class Layer_bk_none1(
405 406
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 + x2

            @staticmethod
            def backward(ctx, dy):
                return 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = True
        input2.stop_gradient = False
        z = Layer_bk_none1.apply(input1, input2)

        with self.assertRaises(ValueError):
422
            z.mean().backward()
423

424
        class Layer_bk_none2(
425 426
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 * 2, x2 * 5

            @staticmethod
            def backward(ctx, *args):
                return 1, 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = True
        input2.stop_gradient = False
        z = Layer_bk_none2.apply(input1, input2)
        z = z[0] + z[1]
        with self.assertRaises(ValueError):
442
            z.mean().backward()
443

W
wanghuancoder 已提交
444 445 446 447 448
    def test_pylayer_bk_return_none(self):
        with _test_eager_guard():
            self.func_test_pylayer_bk_return_none()
        self.func_test_pylayer_bk_return_none()

449
    def func_test_pylayer_inplace(self):
450
        class cus_tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
451 452
            @staticmethod
            def forward(ctx, x):
453
                return x
454 455 456 457 458

            @staticmethod
            def backward(ctx, dy):
                return dy

459 460 461 462 463
        class Layer(paddle.nn.Layer):
            def __init__(self):
                super(Layer, self).__init__()

            def forward(self, data):
464
                data = data**2
465 466 467 468
                z = paddle.tanh(data)
                z = cus_tanh.apply(data)
                return z.mean()

469 470 471
        for i in range(2):
            data = paddle.ones([2, 3], dtype="float64") / (i + 1)
            data.stop_gradient = False
472 473 474 475 476
            layer = Layer()
            z = layer(data)
            z.backward()
            self.assertTrue(data.grad is not None)

477 478 479 480 481 482 483 484
    def test_pylayer_inplace(self):
        with _test_eager_guard():
            self.func_test_pylayer_inplace()
        self.func_test_pylayer_inplace()

    def test_pylayer_inplace_backward_error(self):
        with _test_eager_guard():

485 486 487
            class cus_tanh(
                EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
            ):
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
                @staticmethod
                def forward(ctx, x):
                    return x

                @staticmethod
                def backward(ctx, dy):
                    return dy

            class Layer(paddle.nn.Layer):
                def __init__(self):
                    super(Layer, self).__init__()

                def forward(self, data):
                    var_b = data**2
                    var_c = var_b**2
                    z = cus_tanh.apply(var_b)
                    loss = paddle.nn.functional.relu(var_c)
                    return loss

            data = paddle.ones([2, 3], dtype="float64")
            data.stop_gradient = False
            layer = Layer()
            z = layer(data)
            with self.assertRaisesRegexp(
512 513 514 515 516
                RuntimeError,
                "received tensor_version:{} != wrapper_version_snapshot:{}".format(
                    1, 0
                ),
            ):
517 518 519 520 521
                z.backward()

    def test_pylayer_inplace_backward_success_1(self):
        with _test_eager_guard():

522 523 524
            class cus_tanh(
                EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
            ):
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
                @staticmethod
                def forward(ctx, x):
                    return x

                @staticmethod
                def backward(ctx, dy):
                    return dy

            class Layer(paddle.nn.Layer):
                def __init__(self):
                    super(Layer, self).__init__()

                def forward(self, data):
                    var_b = data**2
                    var_c = cus_tanh.apply(var_b)
                    var_d = var_c**2
                    loss = var_d.sum()
                    return loss

            for i in range(2):
                data = paddle.ones([2, 3], dtype="float64") / (i + 1)
                data.stop_gradient = False
                layer = Layer()
                z = layer(data)
                z.backward()
                self.assertTrue(data.grad is not None)

    def test_pylayer_inplace_backward_success_2(self):
        with _test_eager_guard():

555 556 557
            class cus_tanh(
                EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
            ):
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
                @staticmethod
                def forward(ctx, x):
                    return x

                @staticmethod
                def backward(ctx, dy):
                    return dy

            class Layer(paddle.nn.Layer):
                def __init__(self):
                    super(Layer, self).__init__()

                def forward(self, data):
                    var_b = data**2
                    var_c = cus_tanh.apply(var_b)
                    var_d = var_c + var_c
                    loss = var_d.sum()
                    return loss

            for i in range(2):
                data = paddle.ones([2, 3], dtype="float64") / (i + 1)
                data.stop_gradient = False
                layer = Layer()
                z = layer(data)
                z.backward()
                self.assertTrue(data.grad is not None)

    def func_test_pylayer_inplace_and_leaf_exception(self):
586
        class cus_pylayer_op(
587 588
            EagerPyLayer if in_dygraph_mode() else LegacyPyLayer
        ):
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
            @staticmethod
            def forward(ctx, x):
                return x

            @staticmethod
            def backward(ctx, dy):
                return dy

        class Layer(paddle.nn.Layer):
            def __init__(self):
                super(Layer, self).__init__()

            def forward(self, data):
                z = cus_pylayer_op.apply(data)
                return z.mean()

        for i in range(2):
            data = paddle.ones([2, 3], dtype="float64") / (i + 1)
            data.stop_gradient = False
            layer = Layer()

            with self.assertRaises(ValueError):
                z = layer(data)

613 614 615 616 617
    def test_pylayer_inplace_and_leaf_exception(self):
        with _test_eager_guard():
            self.func_test_pylayer_inplace_and_leaf_exception()
        self.func_test_pylayer_inplace_and_leaf_exception()

W
wanghuancoder 已提交
618
    def func_test_backward_in_backward(self):
619
        class cus_tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
            @staticmethod
            def forward(ctx, x):
                temp = x.detach()
                ctx.inputs = temp
                return x.mean()

            @staticmethod
            def backward(ctx, dy):
                with paddle.set_grad_enabled(True):
                    temp = ctx.inputs
                    temp.stop_gradient = False
                    z = paddle.tanh(temp)
                    z.backward()
                    self.assertTrue(temp.grad is not None)
                    return paddle.to_tensor(temp.grad)

        for i in range(2):
            data = paddle.ones([2, 3], dtype="float32") / (i + 1)
            data.stop_gradient = False
639 640 641 642
            data = paddle.nn.functional.relu(data)
            z = paddle.tanh(data)
            z = cus_tanh.apply(data)

W
wanghuancoder 已提交
643 644 645 646 647 648
    def test_backward_in_backward(self):
        with _test_eager_guard():
            self.func_test_backward_in_backward()
        self.func_test_backward_in_backward()

    def func_test_return_to_tensor(self):
649
        class Tanh(EagerPyLayer if in_dygraph_mode() else LegacyPyLayer):
650 651 652 653 654 655 656 657 658
            @staticmethod
            def forward(ctx, x1):
                y1 = paddle.tanh(x1)
                ctx.save_for_backward(y1)
                tensor_1 = paddle.to_tensor([1, 2], dtype='float32')
                return y1, 5, None, "helloworld", tensor_1

            @staticmethod
            def backward(ctx, dy1, dy2):
659
                (y1,) = ctx.saved_tensor()
660 661 662 663 664 665 666 667 668 669
                re1 = dy1 * (1 - paddle.square(y1))
                return dy1

        input1 = paddle.randn([2, 3]).astype("float32")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z, number, none_item, string_item, tensor1 = Tanh.apply(x1=input1)
        z.mean().backward()

W
wanghuancoder 已提交
670 671 672 673 674 675 676 677 678 679 680
    def test_return_to_tensor(self):
        with _test_eager_guard():
            self.func_test_return_to_tensor()
        self.func_test_return_to_tensor()

    def test_materialize_grads(self):
        with _test_eager_guard():

            class Tanh(EagerPyLayer):
                @staticmethod
                def forward(ctx, x):
681
                    ctx.mark_not_inplace(x)
W
wanghuancoder 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
                    return x, x + x

                @staticmethod
                def backward(ctx, grad, grad2):
                    self.assertEqual(grad2, paddle.zeros([1]))
                    return grad

            x = paddle.ones([1], dtype="float64")
            x.stop_gradient = False
            Tanh.apply(x)[0].backward()

    def test_dont_materialize_grads(self):
        with _test_eager_guard():

            class Tanh(EagerPyLayer):
                @staticmethod
                def forward(ctx, x):
699
                    ctx.mark_not_inplace(x)
W
wanghuancoder 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
                    ctx.set_materialize_grads(False)
                    return x, x + x

                @staticmethod
                def backward(ctx, grad, grad2):
                    self.assertIsNone(grad2)
                    return grad

            x = paddle.ones([1], dtype="float64")
            x.stop_gradient = False
            Tanh.apply(x)[0].backward()

    def test_mark_non_differentiable(self):
        with _test_eager_guard():

            class Tanh(EagerPyLayer):
                @staticmethod
                def forward(ctx, x):
                    a = x + x
                    ctx.mark_non_differentiable(a)
                    return a

                @staticmethod
                def backward(ctx, grad):
                    self.assertTrue(False)  # should not be call
                    return paddle.ones([1], dtype="float64")

            x = paddle.ones([1], dtype="float64")
            x.stop_gradient = False
            y = Tanh.apply(x)
            y.sum().backward()

    def test_mark_non_differentiable2(self):
        with _test_eager_guard():

            class Tanh(EagerPyLayer):
                @staticmethod
                def forward(ctx, x):
                    a = x + x
                    b = x + x + x
                    ctx.mark_non_differentiable(a)
                    return a, b

                @staticmethod
                def backward(ctx, grad_a, grad_b):
                    self.assertEqual(grad_a, paddle.zeros([1]))
                    self.assertEqual(grad_b, paddle.ones([1], dtype="float64"))
                    return grad_b

            x = paddle.ones([1], dtype="float64")
            x.stop_gradient = False
            a, b = Tanh.apply(x)
            b.sum().backward()
            self.assertEqual(x.grad, paddle.ones([1], dtype="float64"))

755 756 757

class TestPyLayerReturnType(unittest.TestCase):
    def test_forward_args_fake_tensor(self):
758
        class Tanh(LegacyPyLayer):
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
            @staticmethod
            def forward(ctx, x1):
                y1 = FakeTensor()
                return y1, x1

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy1

        input1 = FakeTensor()

        with self.assertRaises(ValueError):
            y1, y2 = Tanh.apply(input1)

    def test_forward_kwargs_fake_tensor(self):
774
        class Tanh(LegacyPyLayer):
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
            @staticmethod
            def forward(ctx, x1):

                return x1

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy1

        input1 = FakeTensor()

        with self.assertRaises(ValueError):
            y = Tanh.apply(x1=input1)

    def test_forward_return_fake_tensor(self):
790
        class Tanh(LegacyPyLayer):
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
            @staticmethod
            def forward(ctx, x1):

                return FakeTensor()

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy1

        input1 = paddle.randn([3, 2])

        with self.assertRaises(ValueError):
            y = Tanh.apply(x1=input1)

    def test_forward_return_fake_tensor_tuple(self):
806
        class Tanh(LegacyPyLayer):
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
            @staticmethod
            def forward(ctx, x1):

                return FakeTensor(), FakeTensor()

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy1

        input1 = paddle.randn([3, 2])

        with self.assertRaises(ValueError):
            y = Tanh.apply(x1=input1)

    def test_backward_return_fake_tensor_tuple(self):
822
        class Tanh(LegacyPyLayer):
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 + 1, x1 + 2

            @staticmethod
            def backward(ctx, dy1, dy2):

                return FakeTensor(), 2

        input1 = paddle.randn([3, 2])
        input1.stop_gradient = False
        y, _ = Tanh.apply(input1, 1 + input1)

        with self.assertRaises(ValueError):
            y.mean().backward()

    def test_backward_return_fake_tensor(self):
840
        class Tanh(LegacyPyLayer):
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
            @staticmethod
            def forward(ctx, x1):
                return x1 + 1, x1 + 2

            @staticmethod
            def backward(ctx, dy1, dy2):
                return FakeTensor()

        input1 = paddle.randn([3, 2])
        input1.stop_gradient = False
        y, _ = Tanh.apply(input1)

        with self.assertRaises(ValueError):
            y.mean().backward()

856 857 858

if __name__ == '__main__':
    unittest.main()