test_pylayer_op.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle
from paddle.autograd import PyLayer


class TestPyLayer(unittest.TestCase):
    def test_simple_pylayer_multiple_output(self):
        class tanh(PyLayer):
            @staticmethod
            def forward(ctx, x1, x2, func1, func2=paddle.square):
                ctx.func = func2
                y1 = func1(x1)
                y2 = func1(x2)
                ctx.save_for_backward(y1, y2)
                return y1, y2

            @staticmethod
            def backward(ctx, dy1, dy2):
                y1, y2 = ctx.saved_tensor()
                re1 = dy1 * (1 - ctx.func(y1))
                re2 = dy2 * (1 - paddle.square(y2))
                return re1, re2

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z = tanh.apply(input1, input1, paddle.tanh, paddle.square)
        z = z[0] + z[1]
        z.mean().backward()

        z2 = paddle.tanh(input2) + paddle.tanh(input2)
        z2.mean().backward()

        self.assertTrue(np.max(np.abs((input1.grad - input2.grad))) < 1e-10)

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    def test_simple_pylayer_return_none_with_no_grad(self):
        class tanh(PyLayer):
            @staticmethod
            def forward(ctx, x1, x2, func1, func2=paddle.square):
                ctx.func = func2
                y1 = func1(x1)
                y2 = func1(x2)
                ctx.save_for_backward(y1, y2)
                return y1, y2

            @staticmethod
            def backward(ctx, dy1, dy2):
                y1, y2 = ctx.saved_tensor()
                re1 = dy1 * (1 - ctx.func(y1))
                re2 = dy2 * (1 - paddle.square(y2))
                return re1, None

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input3 = input1.detach().clone()
        input4 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        input3.stop_gradient = True
        input4.stop_gradient = True
        z = tanh.apply(input1, input3, paddle.tanh, paddle.square)
        z = z[0] + z[1]
        z.mean().backward()

        z2 = paddle.tanh(input2) + paddle.tanh(input4)
        z2.mean().backward()

        self.assertTrue(np.max(np.abs((input1.grad - input2.grad))) < 1e-10)

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    def test_simple_pylayer_single_output(self):
        class tanh(PyLayer):
            @staticmethod
            def forward(ctx, x1, func1, func2=paddle.square):
                ctx.func = func2
                y1 = func1(x1)
                ctx.save_for_backward(y1)
                return y1

            @staticmethod
            def backward(ctx, dy1):
                y1, = ctx.saved_tensor()
                re1 = dy1 * (1 - ctx.func(y1))
                return re1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = input1.detach().clone()
        input1.stop_gradient = False
        input2.stop_gradient = False
        z = tanh.apply(x1=input1, func1=paddle.tanh)
        z.mean().backward()
        z2 = paddle.tanh(input2)
        z2.mean().backward()

        self.assertTrue(np.max(np.abs((input1.grad - input2.grad))) < 1e-10)

    def test_pylayer_dtype(self):
        class tanh(PyLayer):
            @staticmethod
            def forward(ctx, x, dtype):
                y = paddle.cast(x, dtype)
                return y

            @staticmethod
            def backward(ctx, dy1):
                return dy1

        dtypes = [
            'bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'
        ]
        for dtype in dtypes:
            input1 = (paddle.randn([2, 3]))
            input1.stop_gradient = False
            self.assertTrue(input1.grad is None)

            z = tanh.apply(input1, dtype)
            z = paddle.cast(z, "float32")
            z.sum().backward()
            self.assertTrue(input1.grad is not None)

    def test_pylayer_Exception_forward(self):
        class Layer_None1(PyLayer):
            @staticmethod
            def forward(ctx, *args):
                return None

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
        with self.assertRaises(NotImplementedError):
            z = Layer_None1.apply(input1)

        class Layer_None2(PyLayer):
            @staticmethod
            def forward(ctx, *args):
                return [None, None]

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
        with self.assertRaises(NotImplementedError):
            z = Layer_None2.apply(input1)

        class Layer_one1(PyLayer):
            @staticmethod
            def forward(ctx, *args):
                return 1

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
        with self.assertRaises(NotImplementedError):
            z = Layer_one1.apply(input1)

        class Layer_one2(PyLayer):
            @staticmethod
            def forward(ctx, *args):
                return [1, 2]

            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
        with self.assertRaises(NotImplementedError):
            z = Layer_one2.apply(input1)

        class Layer_no_fw(PyLayer):
            @staticmethod
            def backward(ctx, *args):
                return args

        input1 = paddle.randn([2, 3]).astype("float64")
        with self.assertRaises(NotImplementedError):
            z = Layer_no_fw.apply(input1)

    def test_pylayer_nograd(self):
        class tanh(PyLayer):
            @staticmethod
            def forward(ctx, x1, func1, func2=paddle.square, xx=None):
                ctx.func = func2
                y1 = func1(x1)
                return y1

            @staticmethod
            def backward(ctx, x1, y1, dy1):
                re1 = dy1 * (1 - ctx.func(y1))
                return re1

        input1 = paddle.randn([2, 3]).astype("float64")
        z = tanh.apply(input1, paddle.tanh, paddle.square)
        z.mean().backward()
        self.assertTrue(z.grad is None)

    def test_pylayer_Exception_bk(self):
        class Layer_bk_none1(PyLayer):
            @staticmethod
            def forward(ctx, x):
                return x * 2

            @staticmethod
            def backward(ctx, dy1):
                return None

        input2 = paddle.randn([2, 3]).astype("float64")
        input2.stop_gradient = False
        z = Layer_bk_none1.apply(input2)

233
        with self.assertRaises(ValueError):
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
            with paddle.fluid.dygraph.guard():
                z.sum().backward()

        class Layer_bk_none2(PyLayer):
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 + x2

            @staticmethod
            def backward(ctx, dy1):
                return None, dy1

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_bk_none2.apply(input1, input1)
249
        with self.assertRaises(ValueError):
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
            with paddle.fluid.dygraph.guard():
                z.mean().backward()

        class Layer_bk_one1(PyLayer):
            @staticmethod
            def forward(ctx, x):
                return x + x

            @staticmethod
            def backward(ctx, dy):
                return 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_bk_one1.apply(input1)
265
        with self.assertRaises(ValueError):
266 267 268 269 270
            with paddle.fluid.dygraph.guard():
                z.mean().backward()

        class Layer_bk_one2(PyLayer):
            @staticmethod
271 272
            def forward(ctx, x1, x2):
                return x1 * 2, x2 * 5
273 274 275 276 277 278 279

            @staticmethod
            def backward(ctx, *args):
                return 1, 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
280 281 282
        y = Layer_bk_one2.apply(input1, input1)
        z = y[0] + y[1]
        with self.assertRaises(ValueError):
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            with paddle.fluid.dygraph.guard():
                z.mean().backward()

        class Layer_no_bk(PyLayer):
            @staticmethod
            def forward(ctx, x):
                return x * 2, x * 5

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_no_bk.apply(input1)

        with self.assertRaises(NotImplementedError):
            with paddle.fluid.dygraph.guard():
                z = z[0] + z[1]
                z.mean().backward()

        class Layer_bk_match(PyLayer):
            @staticmethod
            def forward(ctx, x):
                return x * 2, x * 5

            @staticmethod
            def backward(ctx, dy1, dy2):
                return dy2 * 2, dy1 * 2

        input1 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = False
        z = Layer_bk_match.apply(input1)
        with self.assertRaises(ValueError):
            with paddle.fluid.dygraph.guard():
                z = z[0] + z[1]
                z.mean().backward()

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    def test_pylayer_bk_return_none(self):
        class Layer_bk_none1(PyLayer):
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 + x2

            @staticmethod
            def backward(ctx, dy):
                return 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = True
        input2.stop_gradient = False
        z = Layer_bk_none1.apply(input1, input2)

        with self.assertRaises(ValueError):
            with paddle.fluid.dygraph.guard():
                z.mean().backward()

        class Layer_bk_none2(PyLayer):
            @staticmethod
            def forward(ctx, x1, x2):
                return x1 * 2, x2 * 5

            @staticmethod
            def backward(ctx, *args):
                return 1, 1

        input1 = paddle.randn([2, 3]).astype("float64")
        input2 = paddle.randn([2, 3]).astype("float64")
        input1.stop_gradient = True
        input2.stop_gradient = False
        z = Layer_bk_none2.apply(input1, input2)
        z = z[0] + z[1]
        with self.assertRaises(ValueError):
            with paddle.fluid.dygraph.guard():
                z.mean().backward()

356 357 358 359
    def test_pylayer_inplace(self):
        class cus_tanh(PyLayer):
            @staticmethod
            def forward(ctx, x):
360
                return x
361 362 363 364 365

            @staticmethod
            def backward(ctx, dy):
                return dy

366 367 368 369 370 371 372 373 374 375
        class Layer(paddle.nn.Layer):
            def __init__(self):
                super(Layer, self).__init__()

            def forward(self, data):
                data = paddle.nn.functional.relu(data)
                z = paddle.tanh(data)
                z = cus_tanh.apply(data)
                return z.mean()

376 377 378
        for i in range(2):
            data = paddle.ones([2, 3], dtype="float64") / (i + 1)
            data.stop_gradient = False
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
            layer = Layer()
            z = layer(data)
            z.backward()
            self.assertTrue(data.grad is not None)

    def test_backward_in_backward(self):
        class cus_tanh(PyLayer):
            @staticmethod
            def forward(ctx, x):
                temp = x.detach()
                ctx.inputs = temp
                return x.mean()

            @staticmethod
            def backward(ctx, dy):
                with paddle.set_grad_enabled(True):
                    temp = ctx.inputs
                    temp.stop_gradient = False
                    z = paddle.tanh(temp)
                    z.backward()
                    self.assertTrue(temp.grad is not None)
                    return paddle.to_tensor(temp.grad)

        for i in range(2):
            data = paddle.ones([2, 3], dtype="float32") / (i + 1)
            data.stop_gradient = False
405 406 407 408 409 410 411
            data = paddle.nn.functional.relu(data)
            z = paddle.tanh(data)
            z = cus_tanh.apply(data)


if __name__ == '__main__':
    unittest.main()