test_variable.py 42.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import unittest
W
WeiXin 已提交
18 19
from functools import reduce

20
import paddle
J
Jiabin Yang 已提交
21
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_, _non_static_mode
22
import paddle
W
wopeizl 已提交
23
import paddle.fluid as fluid
H
Hongyu Liu 已提交
24
import paddle.fluid.layers as layers
25
import paddle.fluid.core as core
Y
Yu Yang 已提交
26 27
import numpy as np

28 29
paddle.enable_static()

Y
Yu Yang 已提交
30 31

class TestVariable(unittest.TestCase):
32

33 34 35
    def setUp(self):
        np.random.seed(2022)

Y
Yu Yang 已提交
36
    def test_np_dtype_convert(self):
37
        DT = core.VarDesc.VarType
38
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
39 40 41 42 43 44 45
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
46 47
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
48

Y
Yu Yang 已提交
49
    def test_var(self):
Y
Yu Yang 已提交
50
        b = default_main_program().current_block()
51 52 53 54
        w = b.create_var(dtype="float64",
                         shape=[784, 100],
                         lod_level=0,
                         name="fc.w")
55
        self.assertNotEqual(str(w), "")
56
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
57 58
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
59
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
60 61 62
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
63
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
64 65
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
66
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
67 68 69 70 71
        self.assertEqual(0, w.lod_level)

        self.assertRaises(ValueError,
                          lambda: b.create_var(name="fc.w", shape=(24, 100)))

72 73 74
        w = b.create_var(dtype=paddle.fluid.core.VarDesc.VarType.STRINGS,
                         shape=[1],
                         name="str_var")
75 76
        self.assertEqual(None, w.lod_level)

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    def test_element_size(self):
        with fluid.program_guard(Program(), Program()):
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
106 107 108
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
109 110
        var = b.create_var(name='step_scopes',
                           type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
111 112
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
113
    def _test_slice(self, place):
W
wopeizl 已提交
114 115 116 117 118
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
119
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
120 121 122 123

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
124
        nw = w[:, :]
W
wopeizl 已提交
125 126
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
127 128
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
129

H
Hongyu Liu 已提交
130 131 132 133 134 135 136
        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
137 138 139 140 141 142

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
143 144 145 146
            tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                     [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                     [[19, 20, 21], [22, 23, 24],
                                      [25, 26, 27]]]).astype('float32')
W
wopeizl 已提交
147 148 149 150
            var = fluid.layers.assign(tensor_array)
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
151 152
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
W
wopeizl 已提交
153
            var_reshape = fluid.layers.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
154 155 156 157 158 159 160 161 162 163
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
164 165 166

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.fc(input=x, size=1, act=None)
H
Hongyu Liu 已提交
167
            y_1 = y[:, 0]
W
wopeizl 已提交
168 169 170 171 172
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
            data.append((np.random.randint(10, size=[13]).astype('float32')))
            exe.run(fluid.default_startup_program())

W
wopeizl 已提交
173
            local_out = exe.run(main,
W
wopeizl 已提交
174
                                feed=feeder.feed([data]),
W
wopeizl 已提交
175 176
                                fetch_list=[
                                    var, var1, var2, var3, var4, var5, var6,
H
Hongyu Liu 已提交
177 178
                                    var7, var8, var9, var10, var11, var12,
                                    var13, var14, var15
W
wopeizl 已提交
179 180
                                ])

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
            np.testing.assert_array_equal(local_out[2], tensor_array[1:])
            np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
            np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
            np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
            np.testing.assert_array_equal(
                local_out[6],
                tensor_array.reshape((3, -1, 3))[:, :, -1])
            np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
            np.testing.assert_array_equal(local_out[8],
                                          tensor_array[:1, :1, :1])
            np.testing.assert_array_equal(local_out[9],
                                          tensor_array[:-1, :-1, :-1])
            np.testing.assert_array_equal(local_out[10],
                                          tensor_array[::-1, :1, :-1])
            np.testing.assert_array_equal(local_out[11], tensor_array[:-1, ::-1,
                                                                      -1:])
            np.testing.assert_array_equal(local_out[12], tensor_array[1:2,
                                                                      2:, ::-1])
            np.testing.assert_array_equal(local_out[13], tensor_array[2:10, 2:,
                                                                      -2:-1])
            np.testing.assert_array_equal(local_out[14],
                                          tensor_array[1:-1, 0:2, ::-1])
            np.testing.assert_array_equal(local_out[15],
                                          tensor_array[::-1, ::-1, ::-1])
W
wopeizl 已提交
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

261 262 263 264 265
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
266
            y = paddle.assign([1, 2, 3, 4])
267 268 269 270
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
271 272
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
273
            out7 = y[..., 0]
274 275

        exe = paddle.static.Executor(place)
276 277
        result = exe.run(prog,
                         fetch_list=[out1, out2, out3, out4, out5, out6, out7])
278

W
WeiXin 已提交
279 280
        expected = [
            data[0:, ..., 1:], data[0:, ...], data[..., 1:], data[...],
281 282
            data[[1, 0], [0, 0]], data[([1, 0], [0, 0])],
            np.array([1])
W
WeiXin 已提交
283
        ]
284 285 286 287 288

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
289 290
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
291
        self.assertTrue((result[6] == expected[6]).all())
292

293 294
        with self.assertRaises(IndexError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
295

296
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
297 298
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
299 300 301 302 303
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
304 305 306 307
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
308 309 310 311 312

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
313 314 315 316
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
317 318

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
319 320
        result = exe.run(
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7])
321

Z
zyfncg 已提交
322 323 324 325
        expected = [
            data[idx0], data[idx1], data[idx2], data[idx3], data[idx4],
            data[np_idx], data[data < 0.36], data[data > 0.6]
        ]
326 327 328 329 330

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
331 332 333 334
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
335

Z
zyfncg 已提交
336 337 338
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
        with self.assertRaises(ValueError):
339 340
            with paddle.static.program_guard(prog):
                res = x[[False, False]]
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

359 360
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
361
        if core.is_compiled_with_cuda():
362 363 364 365 366 367
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
368
            self._test_slice_index_ellipsis(place)
369
            self._test_slice_index_list_bool(place)
370
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

388
    def test_fake_interface_only_api(self):
389 390 391
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
408
            var.stop_gradient = True
409 410 411 412 413 414
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
415

416 417 418
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

419 420 421 422 423
        var = b.create_var(name="var",
                           shape=[1, 1],
                           dtype="float32",
                           type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
                           persistable=True)
424 425 426 427 428 429

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
458 459 460
                x = paddle.static.data(name='x',
                                       shape=[3, 2, 1],
                                       dtype='float32')
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
                result = exe.run(main,
                                 feed={'x': feed_data},
                                 fetch_list=[x, detach_x])
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

478 479 480
                modified_value = np.random.uniform(-1, 1,
                                                   size=[3, 2,
                                                         1]).astype('float32')
481 482 483 484 485
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
486

487
class TestVariableSlice(unittest.TestCase):
488

489 490 491
    def setUp(self):
        np.random.seed(2022)

492 493 494 495 496 497 498 499 500
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
501
            out4 = x[..., None, :, None]
502

503
        outs = [out0, out1, out2, out3, out4]
504 505 506 507
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
508 509
            data[0:, None, 1:], data[0:, None], data[None, 1:], data[None],
            data[..., None, :, None]
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
            data[0, 1:, None], data[0, None], data[None, 1], data[None],
            data[0, 0, 0, None], data[None, 0, 0, 0, None]
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
549
class TestListIndex(unittest.TestCase):
550

551 552 553
    def setUp(self):
        np.random.seed(2022)

W
WeiXin 已提交
554 555 556 557 558 559 560
    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
561 562
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
563 564 565 566 567 568 569 570 571 572

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
573 574 575
                x = paddle.static.data(name='x',
                                       shape=array.shape,
                                       dtype='float32')
W
WeiXin 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

                y = x[index_mod]

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

                getitem_np = array[index_mod]
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
593
                np.testing.assert_array_equal(getitem_np, getitem_pp[0])
W
WeiXin 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):

            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
                getitem_np = array[index_mod]

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
620
            np.testing.assert_array_equal(getitem_np, getitem_pp.numpy())
W
WeiXin 已提交
621 622 623 624 625 626 627

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
628 629
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
630 631 632 633 634 635

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
636 637
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
638 639 640 641 642 643 644 645 646

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):

            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

647 648 649 650 651 652 653 654 655
            value = paddle.static.data(name='value',
                                       shape=value_np.shape,
                                       dtype='float32')
            index1 = paddle.static.data(name='index1',
                                        shape=index1.shape,
                                        dtype='int32')
            index2 = paddle.static.data(name='index2',
                                        shape=index2.shape,
                                        dtype='int32')
W
WeiXin 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

            y = x[index1, index2]

            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

            getitem_pp = exe.run(prog,
                                 feed={
                                     x.name: array,
                                     index1.name: index_mod1,
                                     index2.name: index_mod2
                                 },
                                 fetch_list=fetch_list)

680 681 682 683
            np.testing.assert_array_equal(
                y2,
                getitem_pp[0],
                err_msg='\n numpy:{},\n paddle:{}'.format(y2, getitem_pp[0]))
W
WeiXin 已提交
684 685 686 687

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
688 689
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
690 691 692 693 694 695

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
696 697
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
698 699 700 701 702 703 704 705 706 707

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
708
        np.testing.assert_array_equal(y.numpy(), y_np)
W
WeiXin 已提交
709

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

733 734 735 736
        np.testing.assert_allclose(value_np,
                                   getitem_pp[0],
                                   rtol=1e-5,
                                   atol=1e-8)
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
765 766 767
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

768 769 770
        value = paddle.static.data(name='value',
                                   shape=value_np.shape,
                                   dtype='float32')
W
WeiXin 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

        x[index] = value
        y = x
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
787 788 789 790 791 792
                setitem_pp = exe.run(prog,
                                     feed={
                                         x.name: array,
                                         value.name: value_np
                                     },
                                     fetch_list=fetch_list)
W
WeiXin 已提交
793 794
            return
        setitem_pp = exe.run(prog,
795 796 797 798
                             feed={
                                 x.name: array,
                                 value.name: value_np
                             },
W
WeiXin 已提交
799 800
                             fetch_list=fetch_list)

801
        np.testing.assert_allclose(array2, setitem_pp[0], rtol=1e-5, atol=1e-8)
W
WeiXin 已提交
802 803 804 805 806

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
807 808
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
809 810 811 812 813

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
814 815
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
830 831
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
832 833 834 835 836

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
837 838
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
852 853
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
854 855 856 857 858

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
859 860
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
861 862 863
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
900 901 902
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
903 904
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
905 906

        index_shape = [2, 3, 4]
907 908 909 910
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
911 912

        value_shape = [4]
913 914
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927
        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')

                value = paddle.static.data(name='value',
                                           shape=value_np.shape,
                                           dtype='float32')
                index_1 = paddle.static.data(name='index_1',
                                             shape=index1.shape,
                                             dtype='int32')
                index_2 = paddle.static.data(name='index_2',
                                             shape=index2.shape,
                                             dtype='int32')
W
WeiXin 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966

                x1[index_1, index_2] = value
                x2[index_1] = value

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name]

                setitem_pp = exe.run(prog,
                                     feed={
                                         x1.name: array,
                                         x2.name: array,
                                         value.name: value_np,
                                         index_1.name: index_mod1,
                                         index_2.name: index_mod2
                                     },
                                     fetch_list=fetch_list)
967 968 969 970 971 972 973 974 975 976
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array2, setitem_pp[0]))
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array3, setitem_pp[1]))
W
WeiXin 已提交
977 978 979 980 981 982 983
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
984 985
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
986 987

        index_shape = [2, 3, 4]
988 989 990 991
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

1007 1008 1009 1010 1011 1012
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')
W
WeiXin 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

                x1[index_mod1, index_mod2] = 1
                x2[index_mod1] = 2.5
                y1 = x1[index_mod2, index_mod1]
                y2 = x2[index_mod2]
                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name, y1.name, y2.name]

                setitem_pp = exe.run(prog,
1028 1029 1030 1031
                                     feed={
                                         x1.name: array,
                                         x2.name: array
                                     },
W
WeiXin 已提交
1032
                                     fetch_list=fetch_list)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array2, setitem_pp[0]))
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array3, setitem_pp[1]))

                np.testing.assert_array_equal(
                    y_np1,
                    setitem_pp[2],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        y_np1, setitem_pp[2]))
                np.testing.assert_array_equal(
                    y_np2,
                    setitem_pp[3],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        y_np2, setitem_pp[3]))
W
WeiXin 已提交
1054 1055 1056 1057 1058 1059 1060
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1061 1062
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
1063
        index_shape = [2, 3, 4]
1064 1065 1066 1067
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1082 1083 1084 1085
            np.testing.assert_array_equal(
                y_t1.numpy(),
                y_np1,
                err_msg='\n numpy:{},\n paddle:{}'.format(y_np1, y_t1.numpy()))
W
WeiXin 已提交
1086 1087 1088 1089 1090 1091
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1092 1093 1094 1095
            np.testing.assert_array_equal(
                y_t2.numpy(),
                y_np2,
                err_msg='\n numpy:{},\n paddle:{}'.format(y_np2, y_t2.numpy()))
W
WeiXin 已提交
1096 1097 1098 1099 1100

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1101 1102 1103 1104 1105
            np.testing.assert_array_equal(
                tensor1.numpy(),
                array1,
                err_msg='\n numpy:{},\n paddle:{}'.format(
                    array1, tensor1.numpy()))
W
WeiXin 已提交
1106 1107 1108 1109 1110 1111 1112
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1113 1114 1115 1116 1117
            np.testing.assert_array_equal(
                tensor2.numpy(),
                array2,
                err_msg='\n numpy:{},\n paddle:{}'.format(
                    array2, tensor2.numpy()))
W
WeiXin 已提交
1118 1119 1120 1121 1122 1123

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1124 1125
if __name__ == '__main__':
    unittest.main()