test_elementwise_add_op.py 22.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
18
import paddle
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
20
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
G
gongweibao 已提交
23 24


K
Kexin Zhao 已提交
25
class TestElementwiseAddOp(OpTest):
26 27 28
    def init_kernel_type(self):
        self.use_mkldnn = False

G
gongweibao 已提交
29 30
    def setUp(self):
        self.op_type = "elementwise_add"
H
hong 已提交
31
        self.python_api = paddle.add
K
Kexin Zhao 已提交
32 33
        self.init_dtype()
        self.init_input_output()
34
        self.init_kernel_type()
K
Kexin Zhao 已提交
35
        self.init_axis()
K
Kexin Zhao 已提交
36

G
gongweibao 已提交
37
        self.inputs = {
K
Kexin Zhao 已提交
38 39
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
G
gongweibao 已提交
40
        }
41
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
K
Kexin Zhao 已提交
42
        self.outputs = {'Out': self.out}
G
gongweibao 已提交
43

H
hong 已提交
44
    def check_eager(self):
H
hong 已提交
45
        return (self.use_mkldnn == False and self.axis == -1)
H
hong 已提交
46

G
gongweibao 已提交
47
    def test_check_output(self):
48
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
H
hong 已提交
49 50 51
        self.check_output(
            check_dygraph=(self.use_mkldnn == False),
            check_eager=self.check_eager())
G
gongweibao 已提交
52 53

    def test_check_grad_normal(self):
54
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
55 56
        if self.dtype == np.float16:
            return
57
        self.check_grad(
H
hong 已提交
58 59 60 61
            ['X', 'Y'],
            'Out',
            check_dygraph=(self.use_mkldnn == False),
            check_eager=self.check_eager())
G
gongweibao 已提交
62 63

    def test_check_grad_ingore_x(self):
64
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
65 66
        if self.dtype == np.float16:
            return
G
gongweibao 已提交
67
        self.check_grad(
68 69 70
            ['Y'],
            'Out',
            no_grad_set=set("X"),
H
hong 已提交
71 72
            check_dygraph=(self.use_mkldnn == False),
            check_eager=self.check_eager())
G
gongweibao 已提交
73 74

    def test_check_grad_ingore_y(self):
75
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
76 77
        if self.dtype == np.float16:
            return
G
gongweibao 已提交
78
        self.check_grad(
79 80 81
            ['X'],
            'Out',
            no_grad_set=set('Y'),
H
hong 已提交
82 83
            check_dygraph=(self.use_mkldnn == False),
            check_eager=self.check_eager())
G
gongweibao 已提交
84

K
Kexin Zhao 已提交
85 86 87 88 89 90
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.add(self.x, self.y)

    def init_dtype(self):
91
        self.dtype = np.float64
K
Kexin Zhao 已提交
92 93

    def init_axis(self):
94
        self.axis = -1
K
Kexin Zhao 已提交
95 96


97 98
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
99
class TestFP16ElementwiseAddOp(TestElementwiseAddOp):
K
Kexin Zhao 已提交
100
    def init_dtype(self):
K
Kexin Zhao 已提交
101 102 103
        self.dtype = np.float16

    def test_check_output(self):
104
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
K
Kexin Zhao 已提交
105 106 107
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
108 109
                self.check_output_with_place(
                    place, atol=1e-3, check_dygraph=(self.use_mkldnn == False))
K
Kexin Zhao 已提交
110

G
gongweibao 已提交
111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
@unittest.skipIf(
    not core.is_compiled_with_cuda() or core.cudnn_version() < 8100,
    "core is not compiled with CUDA and cudnn version need larger than 8.1.0")
class TestBF16ElementwiseAddOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_add"
        self.dtype = np.uint16

        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.out = np.add(self.x, self.y)

        self.axis = -1

        self.inputs = {
            'X':
            OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(self.x)),
            'Y':
            OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(self.y))
        }
        self.attrs = {'axis': self.axis, 'use_mkldnn': False}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}

    def test_check_output(self):
        place = core.CUDAPlace(0)
H
hong 已提交
137
        self.check_output_with_place(place, check_eager=False)
138 139 140

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
H
hong 已提交
141
        self.check_grad_with_place(place, ['X', 'Y'], 'Out', check_eager=False)
142 143 144

    def test_check_grad_ingore_x(self):
        place = core.CUDAPlace(0)
H
hong 已提交
145 146
        self.check_grad_with_place(
            place, ['Y'], 'Out', no_grad_set=set("X"), check_eager=False)
147 148 149

    def test_check_grad_ingore_y(self):
        place = core.CUDAPlace(0)
H
hong 已提交
150 151
        self.check_grad_with_place(
            place, ['X'], 'Out', no_grad_set=set('Y'), check_eager=False)
152 153


154 155
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
K
Kexin Zhao 已提交
156
class TestElementwiseAddOp_scalar(TestElementwiseAddOp):
K
Kexin Zhao 已提交
157 158 159 160 161 162
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(1).astype(self.dtype)
        self.out = self.x + self.y


163 164
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
K
Kexin Zhao 已提交
165 166 167 168 169
class TestFP16ElementwiseAddOp_scalar(TestFP16ElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(1).astype(self.dtype)
        self.out = self.x + self.y
170 171


172 173
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1,1) to test broadcast.")
K
Kexin Zhao 已提交
174
class TestElementwiseAddOp_scalar2(TestElementwiseAddOp):
K
Kexin Zhao 已提交
175 176 177 178 179 180
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(1, 1).astype(self.dtype)
        self.out = self.x + self.y


181 182
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1,1) to test broadcast.")
K
Kexin Zhao 已提交
183 184 185 186 187
class TestFP16ElementwiseAddOp_scalar2(TestFP16ElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(1, 1).astype(self.dtype)
        self.out = self.x + self.y
188 189


K
Kexin Zhao 已提交
190
class TestElementwiseAddOp_Vector(TestElementwiseAddOp):
K
Kexin Zhao 已提交
191
    def init_input_output(self):
192 193
        self.x = np.random.random((100, )).astype(self.dtype)
        self.y = np.random.random((100, )).astype(self.dtype)
K
Kexin Zhao 已提交
194 195 196 197 198
        self.out = np.add(self.x, self.y)


class TestFP16ElementwiseAddOp_Vector(TestFP16ElementwiseAddOp):
    def init_input_output(self):
199 200
        self.x = np.random.random((100, )).astype(self.dtype)
        self.y = np.random.random((100, )).astype(self.dtype)
K
Kexin Zhao 已提交
201
        self.out = np.add(self.x, self.y)
G
gongweibao 已提交
202 203


K
Kexin Zhao 已提交
204
class TestElementwiseAddOp_broadcast_0(TestElementwiseAddOp):
K
Kexin Zhao 已提交
205
    def init_input_output(self):
206 207 208
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(100, 1, 1)
G
gongweibao 已提交
209

K
Kexin Zhao 已提交
210 211 212 213 214 215
    def init_axis(self):
        self.axis = 0


class TestFP16ElementwiseAddOp_broadcast_0(TestFP16ElementwiseAddOp):
    def init_input_output(self):
216 217 218
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(100, 1, 1)
K
Kexin Zhao 已提交
219 220 221

    def init_axis(self):
        self.axis = 0
G
gongweibao 已提交
222 223


K
Kexin Zhao 已提交
224
class TestElementwiseAddOp_broadcast_1(TestElementwiseAddOp):
K
Kexin Zhao 已提交
225
    def init_input_output(self):
226 227 228
        self.x = np.random.rand(2, 100, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 100, 1)
G
gongweibao 已提交
229

K
Kexin Zhao 已提交
230 231 232 233 234 235
    def init_axis(self):
        self.axis = 1


class TestFP16ElementwiseAddOp_broadcast_1(TestFP16ElementwiseAddOp):
    def init_input_output(self):
236 237 238
        self.x = np.random.rand(2, 100, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 100, 1)
K
Kexin Zhao 已提交
239 240 241

    def init_axis(self):
        self.axis = 1
G
gongweibao 已提交
242 243


K
Kexin Zhao 已提交
244
class TestElementwiseAddOp_broadcast_2(TestElementwiseAddOp):
K
Kexin Zhao 已提交
245
    def init_input_output(self):
246 247 248
        self.x = np.random.rand(2, 3, 100).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 1, 100)
G
gongweibao 已提交
249

K
Kexin Zhao 已提交
250 251 252

class TestFP16ElementwiseAddOp_broadcast_2(TestFP16ElementwiseAddOp):
    def init_input_output(self):
253 254 255
        self.x = np.random.rand(2, 3, 100).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 1, 100)
G
gongweibao 已提交
256 257


K
Kexin Zhao 已提交
258
class TestElementwiseAddOp_broadcast_3(TestElementwiseAddOp):
K
Kexin Zhao 已提交
259
    def init_input_output(self):
260
        self.x = np.random.rand(2, 10, 12, 1).astype(self.dtype)
261 262
        self.y = np.random.rand(10, 12).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 10, 12, 1)
G
gongweibao 已提交
263

K
Kexin Zhao 已提交
264 265 266 267 268 269
    def init_axis(self):
        self.axis = 1


class TestFP16ElementwiseAddOp_broadcast_3(TestFP16ElementwiseAddOp):
    def init_input_output(self):
270 271 272
        self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype)
        self.y = np.random.rand(10, 12).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 10, 12, 1)
K
Kexin Zhao 已提交
273 274 275

    def init_axis(self):
        self.axis = 1
G
gongweibao 已提交
276 277


K
Kexin Zhao 已提交
278
class TestElementwiseAddOp_broadcast_4(TestElementwiseAddOp):
K
Kexin Zhao 已提交
279
    def init_input_output(self):
280
        self.x = np.random.rand(100, 2, 1, 2).astype(self.dtype)
281 282
        self.y = np.random.rand(100, 1).astype(self.dtype)
        self.out = self.x + self.y.reshape(100, 1, 1, 1)
K
Kexin Zhao 已提交
283 284 285

    def init_axis(self):
        self.axis = 0
286

K
Kexin Zhao 已提交
287 288 289

class TestFP16ElementwiseAddOp_broadcast_4(TestFP16ElementwiseAddOp):
    def init_input_output(self):
290
        self.x = np.random.rand(100, 2, 1, 2).astype(self.dtype)
291 292
        self.y = np.random.rand(100, 1).astype(self.dtype)
        self.out = self.x + self.y.reshape(100, 1, 1, 1)
K
Kexin Zhao 已提交
293 294 295

    def init_axis(self):
        self.axis = 0
296 297


298 299
class TestElementwiseAddOp_broadcast_5(TestElementwiseAddOp):
    def init_input_output(self):
300 301
        self.x = np.random.rand(10, 3, 12).astype(self.dtype)
        self.y = np.random.rand(10, 1, 12).astype(self.dtype)
302 303 304 305 306
        self.out = self.x + self.y


class TestFP16ElementwiseAddOp_broadcast_5(TestFP16ElementwiseAddOp):
    def init_input_output(self):
307 308
        self.x = np.random.rand(10, 3, 12).astype(self.dtype)
        self.y = np.random.rand(10, 1, 12).astype(self.dtype)
309 310 311 312 313
        self.out = self.x + self.y


class TestElementwiseAddOp_broadcast_6(TestElementwiseAddOp):
    def init_input_output(self):
314 315
        self.x = np.random.rand(2, 12, 3, 5).astype(self.dtype)
        self.y = np.random.rand(2, 12, 1, 5).astype(self.dtype)
316 317 318 319 320 321 322
        self.out = self.x + self.y


class TestElementwiseAddOp_broadcast_7(TestElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.rand(1, 1, 20, 5).astype(self.dtype)
        self.y = np.random.rand(20, 5, 1, 1).astype(self.dtype)
323 324 325 326 327
        self.out = self.x + self.y


class TestFP16ElementwiseAddOp_broadcast_6(TestFP16ElementwiseAddOp):
    def init_input_output(self):
328 329
        self.x = np.random.rand(2, 12, 3, 5).astype(self.dtype)
        self.y = np.random.rand(2, 12, 1, 5).astype(self.dtype)
330 331 332
        self.out = self.x + self.y


K
Kexin Zhao 已提交
333
class TestElementwiseAddOp_rowwise_add_0(TestElementwiseAddOp):
K
Kexin Zhao 已提交
334
    def init_input_output(self):
335 336 337
        self.x = np.random.rand(2, 10, 12).astype(self.dtype)
        self.y = np.random.rand(10, 12).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 10, 12)
Q
qijun 已提交
338

K
Kexin Zhao 已提交
339 340 341 342 343 344
    def init_axis(self):
        self.axis = 1


class TestFP16ElementwiseAddOp_rowwise_add_0(TestFP16ElementwiseAddOp):
    def init_input_output(self):
345 346 347
        self.x = np.random.rand(2, 10, 12).astype(self.dtype)
        self.y = np.random.rand(10, 12).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 10, 12)
K
Kexin Zhao 已提交
348 349 350

    def init_axis(self):
        self.axis = 1
Q
qijun 已提交
351 352


353 354
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
K
Kexin Zhao 已提交
355
class TestElementwiseAddOp_rowwise_add_1(TestElementwiseAddOp):
K
Kexin Zhao 已提交
356
    def init_input_output(self):
357
        self.x = np.random.rand(100, 1).astype(self.dtype)
K
Kexin Zhao 已提交
358 359
        self.y = np.random.rand(1).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 1)
Q
qijun 已提交
360

K
Kexin Zhao 已提交
361 362 363 364
    def init_axis(self):
        self.axis = 1


365 366
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
K
Kexin Zhao 已提交
367 368
class TestFP16ElementwiseAddOp_rowwise_add_1(TestFP16ElementwiseAddOp):
    def init_input_output(self):
369
        self.x = np.random.rand(100, 1).astype(self.dtype)
K
Kexin Zhao 已提交
370 371 372 373 374
        self.y = np.random.rand(1).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 1)

    def init_axis(self):
        self.axis = 1
Q
qijun 已提交
375 376


377 378
class TestElementwiseAddOp_channelwise_add(TestElementwiseAddOp):
    def init_input_output(self):
379 380
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100, 1, 1).astype(self.dtype)
381 382 383 384 385 386 387 388
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


class TestFP16ElementwiseAddOp_channelwise_add(TestFP16ElementwiseAddOp):
    def init_input_output(self):
389 390
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100, 1, 1).astype(self.dtype)
391 392 393 394 395 396
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


397 398
class TestElementwiseAddOp_commonuse_add1(TestElementwiseAddOp):
    def init_input_output(self):
399 400
        self.x = np.random.rand(2, 3, 100).astype(self.dtype)
        self.y = np.random.rand(1, 1, 100).astype(self.dtype)
401 402 403 404 405 406
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


407 408
class TestElementwiseFP16AddOp_commonuse_add1(TestFP16ElementwiseAddOp):
    def init_input_output(self):
409
        self.x = np.random.rand(2, 3, 100).astype(self.dtype)
410 411 412 413 414 415 416
        self.y = np.random.rand(1, 1, 100).astype(self.dtype)
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


417 418
class TestElementwiseAddOp_commonuse_add2(TestElementwiseAddOp):
    def init_input_output(self):
419 420
        self.x = np.random.rand(10, 3, 1, 4).astype(self.dtype)
        self.y = np.random.rand(10, 1, 12, 1).astype(self.dtype)
421 422 423 424 425 426 427 428
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = -1


class TestElementwiseAddOp_xsize_lessthan_ysize_add(TestElementwiseAddOp):
    def init_input_output(self):
429
        self.x = np.random.rand(10, 12).astype(self.dtype)
430
        self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype)
431 432 433 434 435 436
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = 2


437 438 439
class TestElementwiseAddOp_same_shape_ysize_large(TestElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.rand(10, 1, 12).astype(self.dtype)
440
        self.y = np.random.rand(10, 2, 12).astype(self.dtype)
441 442 443 444 445 446
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = 0


447
class TestElementwiseAddOpError(unittest.TestCase):
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of elementwise_add must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            y1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.elementwise_add, x1, y1)

            # the input dtype of elementwise_add must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8")
            y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.elementwise_add, x2, y2)


464 465 466 467
class TestAddApi(unittest.TestCase):
    def _executed_api(self, x, y, name=None):
        return paddle.add(x, y, name)

468 469 470 471 472
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

473
            y_1 = self._executed_api(x, y, name='add_res')
474 475
            self.assertEqual(('add_res' in y_1.name), True)

Y
Yang Zhang 已提交
476
    def test_declarative(self):
477 478 479 480 481 482 483 484 485 486
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
487
            z = self._executed_api(x, y)
488 489 490 491

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
Y
Yang Zhang 已提交
492
            z_expected = np.array([3., 8., 6.])
493 494 495 496 497 498 499 500
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
501
            z = self._executed_api(x, y)
502
            np_z = z.numpy()
Y
Yang Zhang 已提交
503
            z_expected = np.array([3., 8., 6.])
504 505 506
            self.assertEqual((np_z == z_expected).all(), True)


507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
class TestAddInplaceApi(TestAddApi):
    def _executed_api(self, x, y, name=None):
        return x.add_(y, name)


class TestAddInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.add_(y)
        numpy_result = self.x_numpy + self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestAddInplaceBroadcastSuccess2(TestAddInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestAddInplaceBroadcastSuccess3(TestAddInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestAddInplaceBroadcastError(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.add_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestAddInplaceBroadcastError2(TestAddInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestAddInplaceBroadcastError3(TestAddInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


570 571 572
class TestComplexElementwiseAddOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_add"
573 574
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
575 576 577 578 579 580 581 582 583 584 585 586 587 588
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
589 590 591 592
        self.x = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
593 594 595
        self.out = self.x + self.y

    def init_grad_input_output(self):
596 597
        self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones(
            self.shape, self.dtype)
598 599 600 601
        self.grad_x = self.grad_out
        self.grad_y = self.grad_out

    def test_check_output(self):
H
hong 已提交
602
        self.check_output(check_eager=False)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


628 629 630 631 632 633 634 635 636 637 638 639 640 641
class TestRealComplexElementwiseAddOp(TestComplexElementwiseAddOp):
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = self.x + self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype) + 1J * np.ones(
            self.shape, self.dtype)
        self.grad_x = np.real(self.grad_out)
        self.grad_y = self.grad_out


642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
class TestBoolAddFloatElementwiseAddop(unittest.TestCase):
    def test_static_add(self):
        paddle.enable_static()
        a = 1.5
        b = paddle.full([4, 5, 6], True, dtype='bool')
        c = a + b
        self.assertTrue(c.dtype == core.VarDesc.VarType.FP32)
        paddle.enable_static()

    def test_dygraph_add(self):
        paddle.disable_static()
        a = 1.5
        b = paddle.full([4, 5, 6], True, dtype='bool')
        c = a + b
        self.assertTrue(c.dtype == core.VarDesc.VarType.FP32)


G
gongweibao 已提交
659
if __name__ == '__main__':
660
    paddle.enable_static()
G
gongweibao 已提交
661
    unittest.main()