test_cos_sim_op.py 4.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

X
Xinghai Sun 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
X
Xinghai Sun 已提交
22 23


Q
qijun 已提交
24
class TestCosSimOp(OpTest):
X
Xinghai Sun 已提交
25
    def setUp(self):
Q
qijun 已提交
26
        self.op_type = "cos_sim"
X
Xinghai Sun 已提交
27
        self.inputs = {
28 29
            'X': np.random.random((6, 20)).astype("float32"),
            'Y': np.random.random((6, 20)).astype("float32")
30 31 32 33 34 35 36 37 38
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
        expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / \
            expect_x_norm / expect_y_norm
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
            'Out': np.expand_dims(expect_out, 1)
X
Xinghai Sun 已提交
39 40
        }

Q
qijun 已提交
41 42
    def test_check_output(self):
        self.check_output()
X
Xinghai Sun 已提交
43

Q
qijun 已提交
44
    def test_check_grad_normal(self):
45
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.06)
X
Xinghai Sun 已提交
46

Q
qijun 已提交
47
    def test_check_grad_ingore_x(self):
48
        self.check_grad(
49
            ['Y'], 'Out', max_relative_error=0.06, no_grad_set=set("X"))
50

51
    def test_check_grad_ingore_y(self):
X
Xinghai Sun 已提交
52
        self.check_grad(
53
            ['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Y'))
54

X
Xinghai Sun 已提交
55

56
class TestCosSimOp2(TestCosSimOp):
57
    def setUp(self):
58
        self.op_type = "cos_sim"
59
        self.inputs = {
Z
zhupengyang 已提交
60 61
            'X': np.random.random((6, 100)).astype("float32"),
            'Y': np.random.random((1, 100)).astype("float32")
62 63 64 65 66 67 68 69 70 71 72 73
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
        expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / \
            expect_x_norm / expect_y_norm
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
            'Out': np.expand_dims(expect_out, 1)
        }


74
class TestCosSimOp3(TestCosSimOp):
75
    def setUp(self):
76
        self.op_type = "cos_sim"
77
        self.inputs = {
Z
zhupengyang 已提交
78 79
            'X': np.random.random((6, 5, 4)).astype("float32"),
            'Y': np.random.random((6, 5, 4)).astype("float32")
80 81 82 83 84 85 86 87 88 89 90 91
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2))
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2))
        expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2)) / \
            expect_x_norm / expect_y_norm
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
            'Out': np.expand_dims(expect_out, 1)
        }


92
class TestCosSimOp4(TestCosSimOp):
93
    def setUp(self):
94
        self.op_type = "cos_sim"
95
        self.inputs = {
Z
zhupengyang 已提交
96 97
            'X': np.random.random((6, 5, 20)).astype("float32"),
            'Y': np.random.random((1, 5, 20)).astype("float32")
98 99 100 101 102 103 104 105 106 107 108 109
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2))
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2))
        expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2)) / \
            expect_x_norm / expect_y_norm
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
            'Out': np.expand_dims(expect_out, 1)
        }


110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
class TestCosSimOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of batch_norm must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            x2 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.cos_sim, x1, x2)

            # the input dtype of batch_norm must be float32
            x3 = fluid.layers.data(name='x3', shape=[3, 4, 5, 6], dtype="int32")
            x4 = fluid.layers.data(name='x4', shape=[3, 4, 5, 6], dtype="int64")
            self.assertRaises(TypeError, fluid.layers.cos_sim, x3, x4)


X
Xinghai Sun 已提交
126 127
if __name__ == '__main__':
    unittest.main()