dist_fleet_simnet_bow.py 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import argparse
import time
import math
import random
22 23
import shutil
import tempfile
24 25 26 27 28 29 30 31 32 33

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
34
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
35

P
pangyoki 已提交
36 37
paddle.enable_static()

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
DTYPE = "int64"
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/simnet.train.1000'
DATA_MD5 = '24e49366eb0611c552667989de2f57d5'

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


56 57 58 59 60 61 62 63 64 65 66 67
def fake_simnet_reader():
    def reader():
        for _ in range(1000):
            q = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            pt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            nt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            yield [q, label, pt, nt]

    return reader


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def get_acc(cos_q_nt, cos_q_pt, batch_size):
    cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
    cond = fluid.layers.cast(cond, dtype='float64')
    cond_3 = fluid.layers.reduce_sum(cond)
    acc = fluid.layers.elementwise_div(
        cond_3,
        fluid.layers.fill_constant(
            shape=[1], value=batch_size * 1.0, dtype='float64'),
        name="simnet_acc")
    return acc


def get_loss(cos_q_pt, cos_q_nt):
    loss_op1 = fluid.layers.elementwise_sub(
        fluid.layers.fill_constant_batch_size_like(
            input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'),
        cos_q_pt)
    loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
    loss_op3 = fluid.layers.elementwise_max(
        fluid.layers.fill_constant_batch_size_like(
            input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'),
        loss_op2)
    avg_cost = fluid.layers.mean(loss_op3)
    return avg_cost


94 95 96
def train_network(batch_size,
                  is_distributed=False,
                  is_sparse=False,
97 98
                  is_self_contained_lr=False,
                  is_pyreader=False):
99 100 101
    # query
    q = fluid.layers.data(
        name="query_ids", shape=[1], dtype="int64", lod_level=1)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    # label data
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    # pt
    pt = fluid.layers.data(
        name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
    # nt
    nt = fluid.layers.data(
        name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)

    datas = [q, label, pt, nt]

    reader = None
    if is_pyreader:
        reader = fluid.io.PyReader(
            feed_list=datas,
            capacity=64,
            iterable=False,
            use_double_buffer=False)

121 122
    # embedding
    q_emb = fluid.embedding(
123 124 125 126
        input=q,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
127
            initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
128
        is_sparse=is_sparse)
129 130
    q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
    # vsum
131 132
    q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
    q_ss = fluid.layers.softsign(q_sum)
133
    # fc layer after conv
134 135 136 137 138 139
    q_fc = fluid.layers.fc(
        input=q_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__q_fc__",
140 141
            learning_rate=base_lr), )

142 143
    # embedding
    pt_emb = fluid.embedding(
144 145 146 147 148 149
        input=pt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__emb__",
150
            learning_rate=emb_lr),
151
        is_sparse=is_sparse)
152 153
    pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
    # vsum
154 155
    pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
    pt_ss = fluid.layers.softsign(pt_sum)
156
    # fc layer
157 158 159 160
    pt_fc = fluid.layers.fc(
        input=pt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
161
            initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
162
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
163

164 165
    # embedding
    nt_emb = fluid.embedding(
166 167 168 169
        input=nt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
170
            initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
171
        is_sparse=is_sparse)
172 173
    nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
    # vsum
174 175
    nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
    nt_ss = fluid.layers.softsign(nt_sum)
176
    # fc layer
177 178 179 180
    nt_fc = fluid.layers.fc(
        input=nt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
181
            initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
182 183 184 185 186 187 188
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
    cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
    cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
    # loss
    avg_cost = get_loss(cos_q_pt, cos_q_nt)
    # acc
    acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
189 190 191 192 193 194 195 196 197 198 199
    return avg_cost, acc, cos_q_pt, reader


class TestDistSimnetBow2x2(FleetDistRunnerBase):
    """
    For test SimnetBow model, use Fleet api
    """

    def net(self, args, batch_size=4, lr=0.01):
        avg_cost, _, predict, self.reader = \
            train_network(batch_size=batch_size, is_distributed=False,
200
                          is_sparse=True, is_self_contained_lr=False, is_pyreader=(args.reader == "pyreader"))
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

    def do_pyreader_training(self, fleet):
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
225
        fleet.init_worker()
226 227 228 229 230 231 232 233 234 235 236 237 238 239
        batch_size = 4
        # reader
        train_reader = paddle.batch(fake_simnet_reader(), batch_size=batch_size)
        self.reader.decorate_sample_list_generator(train_reader)
        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
                    loss_val = exe.run(program=fluid.default_main_program(),
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
                    message = "TRAIN ---> pass: {} loss: {}\n".format(epoch_id,
                                                                      loss_val)
240
                    fleet.util.print_on_rank(message, 0)
241 242 243 244 245 246 247

                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

    def do_dataset_training(self, fleet):
        pass
248 249 250 251


if __name__ == "__main__":
    runtime_main(TestDistSimnetBow2x2)