Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d0962abd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d0962abd
编写于
9月 02, 2020
作者:
C
Chengmo
提交者:
GitHub
9月 02, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
supplement bug fix of parameter server (#26217)
* fix fluid.embedding
上级
ad6e3dd6
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
255 addition
and
340 deletion
+255
-340
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.cc
.../operators/distributed_ops/distributed_lookup_table_op.cc
+16
-9
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.h
...d/operators/distributed_ops/distributed_lookup_table_op.h
+21
-0
python/paddle/distributed/fleet/runtime/parameter_server_runtime.py
...dle/distributed/fleet/runtime/parameter_server_runtime.py
+4
-3
python/paddle/fluid/incubate/fleet/parameter_server/ir/public.py
...paddle/fluid/incubate/fleet/parameter_server/ir/public.py
+7
-5
python/paddle/fluid/incubate/fleet/parameter_server/ir/trainer_pass.py
.../fluid/incubate/fleet/parameter_server/ir/trainer_pass.py
+7
-4
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+0
-2
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
+2
-5
python/paddle/fluid/tests/unittests/dist_fleet_simnet_bow.py
python/paddle/fluid/tests/unittests/dist_fleet_simnet_bow.py
+105
-112
python/paddle/fluid/tests/unittests/simnet_dataset_reader.py
python/paddle/fluid/tests/unittests/simnet_dataset_reader.py
+33
-0
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
+0
-35
python/paddle/fluid/tests/unittests/test_dist_fleet_geo.py
python/paddle/fluid/tests/unittests/test_dist_fleet_geo.py
+2
-2
python/paddle/fluid/tests/unittests/test_dist_fleet_grad_clip.py
...paddle/fluid/tests/unittests/test_dist_fleet_grad_clip.py
+2
-2
python/paddle/fluid/tests/unittests/test_dist_fleet_simnet.py
...on/paddle/fluid/tests/unittests/test_dist_fleet_simnet.py
+56
-0
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
+0
-161
未找到文件。
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.cc
浏览文件 @
d0962abd
...
...
@@ -25,25 +25,32 @@ class DistributedLookupTableOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"Ids"
),
"Input(Ids) of LookupTableOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) of LookupTableOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
"Outputs"
),
"Output(Outs) of LookupTableOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInputs
(
"Ids"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Ids) of LookupTableOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"W"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(W) of LookupTableOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutputs
(
"Outputs"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(Outs) of LookupTableOp should not be null."
));
auto
ids_dims
=
ctx
->
GetInputsDim
(
"Ids"
);
auto
table_dims
=
ctx
->
GetInputDim
(
"W"
);
PADDLE_ENFORCE_EQ
(
table_dims
.
size
(),
2
,
"Only 2 dimensions of the 'Embedding' is supported."
);
PADDLE_ENFORCE_EQ
(
table_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Only 2 dimensions of the 'Embedding' is supported."
));
for
(
auto
&
ids_dim
:
ids_dims
)
{
PADDLE_ENFORCE_EQ
(
ids_dim
.
size
(),
2
,
"The dimension of the 'Ids' tensor must be 2."
);
platform
::
errors
::
InvalidArgument
(
"The dimension of the 'Ids' tensor must be 2."
));
}
auto
endpoints
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
std
::
string
>>
(
"endpoints"
);
// for fluid.embedding
auto
lookup_table_version
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"lookup_table_version"
);
...
...
paddle/fluid/operators/distributed_ops/distributed_lookup_table_op.h
浏览文件 @
d0962abd
...
...
@@ -35,9 +35,30 @@ class DistributedLookupTableKernel : public framework::OpKernel<T> {
auto
endpoints
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"endpoints"
);
auto
is_distributed
=
context
.
Attr
<
bool
>
(
"is_distributed"
);
auto
lookup_table_version
=
context
.
Attr
<
std
::
string
>
(
"lookup_table_version"
);
operators
::
distributed
::
prefetchs
(
id_names
,
out_names
,
embedding_name
,
is_distributed
,
lookup_tables
,
endpoints
,
context
,
context
.
scope
());
if
(
lookup_table_version
==
"lookup_table_v2"
)
{
auto
&
scope
=
context
.
scope
();
auto
emb_dim
=
scope
.
FindVar
(
embedding_name
)
->
Get
<
framework
::
LoDTensor
>
().
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
id_names
.
size
();
++
i
)
{
auto
*
id_var
=
scope
.
FindVar
(
id_names
[
i
]);
auto
*
out_var
=
scope
.
FindVar
(
out_names
[
i
]);
auto
*
id_tensor
=
id_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
id_dims
=
id_tensor
->
dims
();
out_tensor
->
Resize
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
id_dims
[
0
]),
static_cast
<
int64_t
>
(
id_dims
[
1
]),
static_cast
<
int64_t
>
(
emb_dim
)}));
}
}
}
};
...
...
python/paddle/distributed/fleet/runtime/parameter_server_runtime.py
浏览文件 @
d0962abd
...
...
@@ -154,15 +154,16 @@ class ParameterServerRuntime(RuntimeBase):
kwargs
[
"sparse_attrs"
]
=
get_sparse_attrs
()
return
kwargs
from
paddle.fluid.incubate.fleet.parameter_server.ir.public
import
_get_lr_ops
from
paddle.fluid.incubate.fleet.parameter_server.ir.public
import
_get_lr_ops
,
_has_global_step
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy
import
\
SyncStrategy
,
GeoStrategy
trainer_config
=
self
.
async_strategy
.
get_trainer_runtime_config
()
lrs
=
_get_lr_ops
(
self
.
origin_main_program
)
if
len
(
lrs
)
>
0
:
lrs
=
_has_global_step
(
_get_lr_ops
(
self
.
origin_main_program
))
if
lrs
:
kwargs
=
{
"need_global_step"
:
"1"
}
else
:
kwargs
=
{
"need_global_step"
:
"0"
}
...
...
python/paddle/fluid/incubate/fleet/parameter_server/ir/public.py
浏览文件 @
d0962abd
...
...
@@ -42,6 +42,9 @@ op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
LR_SCHED_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
LRSched
OPT_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
SPARSE_OP_LIST
=
[
"lookup_table"
,
"lookup_table_v2"
]
SPARSE_OP_TYPE_DICT
=
{
"lookup_table"
:
"W"
,
"lookup_table_v2"
:
"W"
}
def
_get_lr_ops
(
program
):
lr_ops
=
[]
...
...
@@ -66,7 +69,7 @@ def _has_global_step(lr_ops):
def
is_sparse_op
(
op
):
if
op
.
type
==
"lookup_table"
and
op
.
attr
(
'is_sparse'
)
is
True
and
op
.
attr
(
if
op
.
type
in
SPARSE_OP_LIST
and
op
.
attr
(
'is_sparse'
)
is
True
and
op
.
attr
(
'is_distributed'
)
is
False
:
return
True
...
...
@@ -78,7 +81,7 @@ def is_sparse_op(op):
def
is_distributed_sparse_op
(
op
):
if
op
.
type
==
"lookup_table"
and
op
.
attr
(
'is_distributed'
)
is
True
:
if
op
.
type
in
SPARSE_OP_LIST
and
op
.
attr
(
'is_distributed'
)
is
True
:
return
True
if
op
.
type
==
"distributed_lookup_table"
and
op
.
attr
(
...
...
@@ -802,11 +805,10 @@ class CompileTimeStrategy(object):
def
_get_sparse_varnames
():
varnames
=
[]
op_types
=
{
"lookup_table"
:
"W"
}
for
op
in
origin_program
.
global_block
().
ops
:
if
op
.
type
in
op_types
.
keys
()
\
if
op
.
type
in
SPARSE_OP_TYPE_DICT
.
keys
()
\
and
op
.
attr
(
'remote_prefetch'
)
is
True
:
param_name
=
op
.
input
(
op_types
[
op
.
type
])[
0
]
param_name
=
op
.
input
(
SPARSE_OP_TYPE_DICT
[
op
.
type
])[
0
]
varnames
.
append
(
param_name
)
return
list
(
set
(
varnames
))
...
...
python/paddle/fluid/incubate/fleet/parameter_server/ir/trainer_pass.py
浏览文件 @
d0962abd
...
...
@@ -40,6 +40,8 @@ LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched
OPT_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
SPARSE_OP_TYPE_DICT
=
{
"lookup_table"
:
"W"
,
"lookup_table_v2"
:
"W"
}
DEVICE_LIST
=
[
"cpu"
,
"gpu"
,
"xpu"
]
COMMUNICATE_OPS_TYPE
=
[
"send"
,
"recv"
,
"fetch_barrier"
,
"send_barrier"
]
DEFAULT_DEVICE
=
'cpu'
...
...
@@ -81,11 +83,10 @@ def distributed_ops_pass(program, config):
def
_get_pull_sparse_ops
(
_program
):
pull_sparse_ops
=
{}
op_types
=
{
"lookup_table"
:
"W"
}
for
op
in
_program
.
global_block
().
ops
:
if
op
.
type
in
op_types
.
keys
()
\
if
op
.
type
in
SPARSE_OP_TYPE_DICT
.
keys
()
\
and
op
.
attr
(
'remote_prefetch'
)
is
True
:
param_name
=
op
.
input
(
op_types
[
op
.
type
])[
0
]
param_name
=
op
.
input
(
SPARSE_OP_TYPE_DICT
[
op
.
type
])[
0
]
ops
=
pull_sparse_ops
.
get
(
param_name
,
[])
ops
.
append
(
op
)
pull_sparse_ops
[
param_name
]
=
ops
...
...
@@ -101,6 +102,7 @@ def distributed_ops_pass(program, config):
w
=
program
.
global_block
().
vars
[
ops
[
0
].
input
(
"W"
)[
0
]]
padding_idx
=
ops
[
0
].
attr
(
"padding_idx"
)
is_distributed
=
ops
[
0
].
attr
(
"is_distributed"
)
op_type
=
ops
[
0
].
type
outputs
=
[
program
.
global_block
().
vars
[
op
.
output
(
"Out"
)[
0
]]
for
op
in
ops
...
...
@@ -149,7 +151,8 @@ def distributed_ops_pass(program, config):
"is_distributed"
:
is_distributed
,
"pserver_num"
:
len
(
pserver_endpoints
),
"padding_idx"
:
padding_idx
,
"trainer_id"
:
trainer_id
"trainer_id"
:
trainer_id
,
"lookup_table_version"
:
op_type
})
else
:
raise
ValueError
(
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
d0962abd
...
...
@@ -432,8 +432,6 @@ if(WITH_DISTRIBUTE)
list
(
REMOVE_ITEM DIST_TEST_OPS
"test_dist_mnist_lars"
)
list
(
REMOVE_ITEM DIST_TEST_OPS
"test_dist_mnist_train"
)
list
(
REMOVE_ITEM DIST_TEST_OPS
"test_dist_save_load"
)
list
(
REMOVE_ITEM DIST_TEST_OPS
"test_dist_simnet_bow"
)
list
(
REMOVE_ITEM DIST_TEST_OPS
"test_dist_fleet_ctr"
)
list
(
REMOVE_ITEM DIST_TEST_OPS
"test_dist_text_classification"
)
list
(
REMOVE_ITEM DIST_TEST_OPS
"test_dist_train"
)
list
(
REMOVE_ITEM DIST_TEST_OPS
"test_dist_word2vec"
)
...
...
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
浏览文件 @
d0962abd
...
...
@@ -196,8 +196,7 @@ class TestDistCTR2x2(FleetDistRunnerBase):
fleet
.
stop_worker
()
def
do_dataset_training
(
self
,
fleet
):
dnn_input_dim
,
lr_input_dim
,
train_file_path
=
ctr_dataset_reader
.
prepare_data
(
)
train_file_list
=
ctr_dataset_reader
.
prepare_fake_data
()
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
...
...
@@ -206,9 +205,7 @@ class TestDistCTR2x2(FleetDistRunnerBase):
thread_num
=
2
batch_size
=
128
filelist
=
[]
for
_
in
range
(
thread_num
):
filelist
.
append
(
train_file_path
)
filelist
=
train_file_list
# config dataset
dataset
=
paddle
.
distributed
.
fleet
.
DatasetFactory
().
create_dataset
()
...
...
python/paddle/fluid/tests/unittests/dist_simnet_bow.py
→
python/paddle/fluid/tests/unittests/dist_
fleet_
simnet_bow.py
浏览文件 @
d0962abd
...
...
@@ -19,6 +19,8 @@ import argparse
import
time
import
math
import
random
import
shutil
import
tempfile
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -29,7 +31,8 @@ from multiprocessing import Process
import
os
import
signal
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
from
test_dist_fleet_base
import
runtime_main
,
FleetDistRunnerBase
from
paddle.distributed.fleet.base.util_factory
import
fleet_util
DTYPE
=
"int64"
DATA_URL
=
'http://paddle-dist-ce-data.bj.bcebos.com/simnet.train.1000'
...
...
@@ -49,6 +52,18 @@ fluid.default_startup_program().random_seed = 1
fluid
.
default_main_program
().
random_seed
=
1
def
fake_simnet_reader
():
def
reader
():
for
_
in
range
(
1000
):
q
=
np
.
random
.
random_integers
(
0
,
1500
-
1
,
size
=
1
).
tolist
()
label
=
np
.
random
.
random_integers
(
0
,
1
,
size
=
1
).
tolist
()
pt
=
np
.
random
.
random_integers
(
0
,
1500
-
1
,
size
=
1
).
tolist
()
nt
=
np
.
random
.
random_integers
(
0
,
1500
-
1
,
size
=
1
).
tolist
()
yield
[
q
,
label
,
pt
,
nt
]
return
reader
def
get_acc
(
cos_q_nt
,
cos_q_pt
,
batch_size
):
cond
=
fluid
.
layers
.
less_than
(
cos_q_nt
,
cos_q_pt
)
cond
=
fluid
.
layers
.
cast
(
cond
,
dtype
=
'float64'
)
...
...
@@ -75,34 +90,40 @@ def get_loss(cos_q_pt, cos_q_nt):
return
avg_cost
def
get_optimizer
(
op
=
"sgd"
):
if
op
.
upper
()
==
"sgd"
.
upper
():
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
base_lr
)
elif
op
.
upper
()
==
"adam"
.
upper
():
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
base_lr
)
else
:
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
base_lr
)
return
optimizer
def
train_network
(
batch_size
,
is_distributed
=
False
,
is_sparse
=
False
,
is_self_contained_lr
=
False
):
is_self_contained_lr
=
False
,
is_pyreader
=
False
):
# query
q
=
fluid
.
layers
.
data
(
name
=
"query_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# label data
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
# pt
pt
=
fluid
.
layers
.
data
(
name
=
"pos_title_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# nt
nt
=
fluid
.
layers
.
data
(
name
=
"neg_title_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
datas
=
[
q
,
label
,
pt
,
nt
]
reader
=
None
if
is_pyreader
:
reader
=
fluid
.
io
.
PyReader
(
feed_list
=
datas
,
capacity
=
64
,
iterable
=
False
,
use_double_buffer
=
False
)
# embedding
q_emb
=
fluid
.
embedding
(
input
=
q
,
is_distributed
=
is_distributed
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
,
learning_rate
=
emb_lr
)
if
is_self_contained_lr
else
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
),
is_sparse
=
is_sparse
)
q_emb
=
fluid
.
layers
.
reshape
(
q_emb
,
[
-
1
,
emb_dim
])
# vsum
...
...
@@ -115,12 +136,8 @@ def train_network(batch_size,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__q_fc__"
,
learning_rate
=
base_lr
))
# label data
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
# pt
pt
=
fluid
.
layers
.
data
(
name
=
"pos_title_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
learning_rate
=
base_lr
),
)
# embedding
pt_emb
=
fluid
.
embedding
(
input
=
pt
,
...
...
@@ -129,9 +146,7 @@ def train_network(batch_size,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
,
learning_rate
=
emb_lr
)
if
is_self_contained_lr
else
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
),
learning_rate
=
emb_lr
),
is_sparse
=
is_sparse
)
pt_emb
=
fluid
.
layers
.
reshape
(
pt_emb
,
[
-
1
,
emb_dim
])
# vsum
...
...
@@ -142,24 +157,16 @@ def train_network(batch_size,
input
=
pt_ss
,
size
=
hid_dim
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__fc__"
,
learning_rate
=
base_lr
),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__fc__"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"__fc_b__"
))
# nt
nt
=
fluid
.
layers
.
data
(
name
=
"neg_title_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# embedding
nt_emb
=
fluid
.
embedding
(
input
=
nt
,
is_distributed
=
is_distributed
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
,
learning_rate
=
emb_lr
)
if
is_self_contained_lr
else
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__emb__"
),
is_sparse
=
is_sparse
)
nt_emb
=
fluid
.
layers
.
reshape
(
nt_emb
,
[
-
1
,
emb_dim
])
# vsum
...
...
@@ -170,9 +177,7 @@ def train_network(batch_size,
input
=
nt_ss
,
size
=
hid_dim
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__fc__"
,
learning_rate
=
base_lr
),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
),
name
=
"__fc__"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"__fc_b__"
))
cos_q_pt
=
fluid
.
layers
.
cos_sim
(
q_fc
,
pt_fc
)
cos_q_nt
=
fluid
.
layers
.
cos_sim
(
q_fc
,
nt_fc
)
...
...
@@ -180,79 +185,67 @@ def train_network(batch_size,
avg_cost
=
get_loss
(
cos_q_pt
,
cos_q_nt
)
# acc
acc
=
get_acc
(
cos_q_nt
,
cos_q_pt
,
batch_size
)
return
[
avg_cost
,
acc
,
cos_q_pt
]
def
combination
(
x
,
y
):
res
=
[[[
xi
,
yi
]
for
yi
in
y
]
for
xi
in
x
]
return
res
[
0
]
def
get_one_data
(
file_list
):
for
file
in
file_list
:
contents
=
[]
with
open
(
file
,
"r"
)
as
fin
:
for
i
in
fin
:
contents
.
append
(
i
.
strip
())
for
index
,
q
in
enumerate
(
contents
):
try
:
one_data
=
[[
int
(
j
)
for
j
in
i
.
split
(
" "
)]
for
i
in
q
.
split
(
";"
)[:
-
1
]]
if
one_data
[
1
][
0
]
+
one_data
[
1
][
1
]
!=
len
(
one_data
)
-
3
:
q
=
fin
.
readline
()
continue
tmp
=
combination
(
one_data
[
3
:
3
+
one_data
[
1
][
0
]],
one_data
[
3
+
one_data
[
1
][
0
]:])
except
Exception
as
e
:
continue
for
each
in
tmp
:
yield
[
one_data
[
2
],
0
,
each
[
0
],
each
[
1
]]
def
get_batch_reader
(
file_list
,
batch_size
):
def
batch_reader
():
res
=
[]
for
i
in
get_one_data
(
file_list
):
if
random
.
random
()
<=
sample_rate
:
res
.
append
(
i
)
if
len
(
res
)
>=
batch_size
:
yield
res
res
=
[]
return
batch_reader
def
get_train_reader
(
batch_size
):
# The training data set.
train_file
=
os
.
path
.
join
(
paddle
.
dataset
.
common
.
DATA_HOME
,
"simnet"
,
"train"
)
train_reader
=
get_batch_reader
([
train_file
],
batch_size
)
train_feed
=
[
"query_ids"
,
"pos_title_ids"
,
"neg_title_ids"
,
"label"
]
return
train_reader
,
train_feed
class
TestDistSimnetBow2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
# Train program
avg_cost
,
acc
,
predict
=
\
train_network
(
batch_size
,
bool
(
int
(
os
.
environ
[
"IS_DISTRIBUTED"
])),
bool
(
int
(
os
.
environ
[
"IS_SPARSE"
])),
bool
(
int
(
os
.
environ
[
"IS_SELF_CONTAINED_LR"
])))
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
os
.
getenv
(
'OPTIMIZER'
,
'sgd'
)
opt
=
get_optimizer
(
opt
)
opt
.
minimize
(
avg_cost
)
# Reader
train_reader
,
_
=
get_train_reader
(
batch_size
)
return
inference_program
,
avg_cost
,
train_reader
,
train_reader
,
acc
,
predict
return
avg_cost
,
acc
,
cos_q_pt
,
reader
class
TestDistSimnetBow2x2
(
FleetDistRunnerBase
):
"""
For test SimnetBow model, use Fleet api
"""
def
net
(
self
,
args
,
batch_size
=
4
,
lr
=
0.01
):
avg_cost
,
_
,
predict
,
self
.
reader
=
\
train_network
(
batch_size
=
batch_size
,
is_distributed
=
False
,
is_sparse
=
True
,
is_self_contained_lr
=
False
,
is_pyreader
=
(
args
.
reader
==
"pyreader"
))
self
.
avg_cost
=
avg_cost
self
.
predict
=
predict
return
avg_cost
def
check_model_right
(
self
,
dirname
):
model_filename
=
os
.
path
.
join
(
dirname
,
"__model__"
)
with
open
(
model_filename
,
"rb"
)
as
f
:
program_desc_str
=
f
.
read
()
program
=
fluid
.
Program
.
parse_from_string
(
program_desc_str
)
with
open
(
os
.
path
.
join
(
dirname
,
"__model__.proto"
),
"w"
)
as
wn
:
wn
.
write
(
str
(
program
))
def
do_pyreader_training
(
self
,
fleet
):
"""
do training using dataset, using fetch handler to catch variable
Args:
fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
"""
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
fleet
.
init_worker
()
exe
.
run
(
fluid
.
default_startup_program
())
batch_size
=
4
# reader
train_reader
=
paddle
.
batch
(
fake_simnet_reader
(),
batch_size
=
batch_size
)
self
.
reader
.
decorate_sample_list_generator
(
train_reader
)
for
epoch_id
in
range
(
1
):
self
.
reader
.
start
()
try
:
pass_start
=
time
.
time
()
while
True
:
loss_val
=
exe
.
run
(
program
=
fluid
.
default_main_program
(),
fetch_list
=
[
self
.
avg_cost
.
name
])
loss_val
=
np
.
mean
(
loss_val
)
message
=
"TRAIN ---> pass: {} loss: {}
\n
"
.
format
(
epoch_id
,
loss_val
)
fleet_util
.
print_on_rank
(
message
,
0
)
pass_time
=
time
.
time
()
-
pass_start
except
fluid
.
core
.
EOFException
:
self
.
reader
.
reset
()
fleet
.
stop_worker
()
def
do_dataset_training
(
self
,
fleet
):
pass
if
__name__
==
"__main__"
:
paddle
.
dataset
.
common
.
download
(
DATA_URL
,
'simnet'
,
DATA_MD5
,
"train"
)
runtime_main
(
TestDistSimnetBow2x2
)
python/paddle/fluid/tests/unittests/simnet_dataset_reader.py
0 → 100644
浏览文件 @
d0962abd
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
logging
import
tarfile
import
random
import
paddle
import
paddle.fluid.incubate.data_generator
as
data_generator
logging
.
basicConfig
()
logger
=
logging
.
getLogger
(
"paddle"
)
logger
.
setLevel
(
logging
.
INFO
)
class
DatasetSimnetReader
(
data_generator
.
MultiSlotDataGenerator
):
def
generate_sample
(
self
,
line
):
pass
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
浏览文件 @
d0962abd
...
...
@@ -156,40 +156,5 @@ class TestDistCtrHalfAsync2x2(TestFleetBase):
"dist_fleet_ctr.py"
,
delta
=
1e-5
,
check_error_log
=
True
)
class
TestDistCtrPsGpuPyreaderAsync2x2
(
TestFleetBase
):
def
_setup_config
(
self
):
self
.
_mode
=
"async"
self
.
_reader
=
"pyreader"
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
,
need_envs
=
{}):
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
,
""
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"FLAGS_rpc_deadline"
:
"30000"
,
# 5sec to fail fast
"http_proxy"
:
""
,
"FLAGS_communicator_send_queue_size"
:
"2"
,
"FLAGS_communicator_max_merge_var_num"
:
"2"
,
"CPU_NUM"
:
"2"
,
"SAVE_MODEL"
:
"1"
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"3"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
tr0_losses
,
tr1_losses
=
self
.
_run_cluster
(
model_file
,
required_envs
)
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_fleet_ctr_ps_gpu.py"
,
delta
=
1e-5
,
check_error_log
=
True
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_fleet_geo.py
浏览文件 @
d0962abd
...
...
@@ -21,7 +21,7 @@ import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler
import
fleet
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy
import
StrategyFactory
from
test_dist_fleet_base
import
TestFleetBase
from
dist_simnet_bow
import
train_network
from
dist_
fleet_
simnet_bow
import
train_network
class
TestDistGeoCtr_2x2
(
TestFleetBase
):
...
...
@@ -72,7 +72,7 @@ class TestGeoSgdTranspiler(unittest.TestCase):
strategy
=
StrategyFactory
.
create_geo_strategy
(
5
)
avg_cost
,
_
,
_
=
train_network
(
batch_size
,
is_distribute
,
is_sparse
)
avg_cost
,
_
,
_
,
_
=
train_network
(
batch_size
,
is_distribute
,
is_sparse
)
optimizer
=
fluid
.
optimizer
.
SGD
(
0.1
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
)
...
...
python/paddle/fluid/tests/unittests/test_dist_fleet_grad_clip.py
浏览文件 @
d0962abd
...
...
@@ -21,7 +21,7 @@ import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler
import
fleet
from
paddle.fluid.transpiler.distribute_transpiler
import
DistributeTranspilerConfig
from
test_dist_fleet_base
import
TestFleetBase
from
dist_simnet_bow
import
train_network
from
dist_
fleet_
simnet_bow
import
train_network
@
unittest
.
skip
(
reason
=
"Skip unstable ut, add it after PR 22957 merged"
)
...
...
@@ -44,7 +44,7 @@ class TestDistGeoClipByGlobalNormTranspiler(unittest.TestCase):
strategy
.
geo_sgd_mode
=
True
strategy
.
geo_sgd_need_push_nums
=
5
avg_cost
,
_
,
_
=
train_network
(
batch_size
,
is_distribute
,
is_sparse
)
avg_cost
,
_
,
_
,
_
=
train_network
(
batch_size
,
is_distribute
,
is_sparse
)
fluid
.
clip
.
set_gradient_clip
(
clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
2.0
))
...
...
python/paddle/fluid/tests/unittests/test_dist_fleet_simnet.py
0 → 100644
浏览文件 @
d0962abd
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
unittest
import
tempfile
from
test_dist_fleet_base
import
TestFleetBase
class
TestDistSimnetASync2x2
(
TestFleetBase
):
def
_setup_config
(
self
):
self
.
_mode
=
"async"
self
.
_reader
=
"pyreader"
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
,
need_envs
=
{}):
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
,
""
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"FLAGS_rpc_deadline"
:
"5000"
,
# 5sec to fail fast
"http_proxy"
:
""
,
"CPU_NUM"
:
"2"
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"3"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
tr0_losses
,
tr1_losses
=
self
.
_run_cluster
(
model_file
,
required_envs
)
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_fleet_simnet_bow.py"
,
delta
=
1e-5
,
check_error_log
=
True
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
已删除
100644 → 0
浏览文件 @
ad6e3dd6
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
unittest
from
test_dist_base
import
TestDistBase
import
os
flag_name
=
os
.
path
.
splitext
(
__file__
)[
0
]
class
TestDistSimnetBowDense2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'0'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
need_envs
=
need_envs
,
log_name
=
flag_name
)
class
TestDistSimnetBow2x2DenseAsync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_enforce_place
=
"CPU"
# FIXME(typhoonzero): fix async tests later
def
notest_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'0'
,
'IS_SELF_CONTAINED_LR'
:
'1'
,
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
100
,
check_error_log
=
True
,
need_envs
=
need_envs
,
log_name
=
flag_name
)
class
TestDistSimnetBowSparse2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
need_envs
=
need_envs
,
log_name
=
flag_name
)
class
TestDistSimnetBow2x2SparseAsync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
100
,
check_error_log
=
True
,
need_envs
=
need_envs
,
log_name
=
flag_name
)
# FIXME(tangwei): Learningrate variable is not created on pserver.
class
TestDistSimnetBow2x2LookupTableSync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
need_envs
=
need_envs
,
log_name
=
flag_name
)
class
TestDistSimnetBow2x2LookupTableAsync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'1'
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
100
,
check_error_log
=
True
,
need_envs
=
need_envs
,
log_name
=
flag_name
)
class
TestDistSimnetBow2x2LookupTableNotContainLRSync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_enforce_place
=
"CPU"
def
test_simnet_bow
(
self
):
need_envs
=
{
"IS_DISTRIBUTED"
:
'0'
,
"IS_SPARSE"
:
'1'
,
'IS_SELF_CONTAINED_LR'
:
'0'
}
self
.
check_with_place
(
"dist_simnet_bow.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
need_envs
=
need_envs
,
log_name
=
flag_name
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录