dist_fleet_simnet_bow.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import argparse
import time
import math
import random
22 23
import shutil
import tempfile
24 25 26 27 28 29 30 31 32 33

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
34 35
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
from paddle.distributed.fleet.base.util_factory import fleet_util
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

DTYPE = "int64"
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/simnet.train.1000'
DATA_MD5 = '24e49366eb0611c552667989de2f57d5'

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


55 56 57 58 59 60 61 62 63 64 65 66
def fake_simnet_reader():
    def reader():
        for _ in range(1000):
            q = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            pt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            nt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            yield [q, label, pt, nt]

    return reader


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def get_acc(cos_q_nt, cos_q_pt, batch_size):
    cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
    cond = fluid.layers.cast(cond, dtype='float64')
    cond_3 = fluid.layers.reduce_sum(cond)
    acc = fluid.layers.elementwise_div(
        cond_3,
        fluid.layers.fill_constant(
            shape=[1], value=batch_size * 1.0, dtype='float64'),
        name="simnet_acc")
    return acc


def get_loss(cos_q_pt, cos_q_nt):
    loss_op1 = fluid.layers.elementwise_sub(
        fluid.layers.fill_constant_batch_size_like(
            input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'),
        cos_q_pt)
    loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
    loss_op3 = fluid.layers.elementwise_max(
        fluid.layers.fill_constant_batch_size_like(
            input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'),
        loss_op2)
    avg_cost = fluid.layers.mean(loss_op3)
    return avg_cost


93 94 95
def train_network(batch_size,
                  is_distributed=False,
                  is_sparse=False,
96 97
                  is_self_contained_lr=False,
                  is_pyreader=False):
98 99 100
    # query
    q = fluid.layers.data(
        name="query_ids", shape=[1], dtype="int64", lod_level=1)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    # label data
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    # pt
    pt = fluid.layers.data(
        name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
    # nt
    nt = fluid.layers.data(
        name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)

    datas = [q, label, pt, nt]

    reader = None
    if is_pyreader:
        reader = fluid.io.PyReader(
            feed_list=datas,
            capacity=64,
            iterable=False,
            use_double_buffer=False)

120 121
    # embedding
    q_emb = fluid.embedding(
122 123 124 125
        input=q,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
126
            initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
127
        is_sparse=is_sparse)
128 129
    q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
    # vsum
130 131
    q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
    q_ss = fluid.layers.softsign(q_sum)
132
    # fc layer after conv
133 134 135 136 137 138
    q_fc = fluid.layers.fc(
        input=q_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__q_fc__",
139 140
            learning_rate=base_lr), )

141 142
    # embedding
    pt_emb = fluid.embedding(
143 144 145 146 147 148
        input=pt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__emb__",
149
            learning_rate=emb_lr),
150
        is_sparse=is_sparse)
151 152
    pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
    # vsum
153 154
    pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
    pt_ss = fluid.layers.softsign(pt_sum)
155
    # fc layer
156 157 158 159
    pt_fc = fluid.layers.fc(
        input=pt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
160
            initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
161
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
162

163 164
    # embedding
    nt_emb = fluid.embedding(
165 166 167 168
        input=nt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
169
            initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
170
        is_sparse=is_sparse)
171 172
    nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
    # vsum
173 174
    nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
    nt_ss = fluid.layers.softsign(nt_sum)
175
    # fc layer
176 177 178 179
    nt_fc = fluid.layers.fc(
        input=nt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
180
            initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
181 182 183 184 185 186 187
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
    cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
    cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
    # loss
    avg_cost = get_loss(cos_q_pt, cos_q_nt)
    # acc
    acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    return avg_cost, acc, cos_q_pt, reader


class TestDistSimnetBow2x2(FleetDistRunnerBase):
    """
    For test SimnetBow model, use Fleet api
    """

    def net(self, args, batch_size=4, lr=0.01):
        avg_cost, _, predict, self.reader = \
            train_network(batch_size=batch_size, is_distributed=False,
                               is_sparse=True, is_self_contained_lr=False, is_pyreader=(args.reader == "pyreader"))
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

    def do_pyreader_training(self, fleet):
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """

        exe = fluid.Executor(fluid.CPUPlace())
        fleet.init_worker()
        exe.run(fluid.default_startup_program())
        batch_size = 4
        # reader
        train_reader = paddle.batch(fake_simnet_reader(), batch_size=batch_size)
        self.reader.decorate_sample_list_generator(train_reader)
        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
                    loss_val = exe.run(program=fluid.default_main_program(),
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
                    message = "TRAIN ---> pass: {} loss: {}\n".format(epoch_id,
                                                                      loss_val)
                    fleet_util.print_on_rank(message, 0)

                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()
        fleet.stop_worker()

    def do_dataset_training(self, fleet):
        pass
248 249 250 251


if __name__ == "__main__":
    runtime_main(TestDistSimnetBow2x2)