pipeline_optimizer.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
from __future__ import print_function
15
from __future__ import division
16
import os
17 18 19 20

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
21 22
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
23
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_loss_grad_op, is_backward_op, is_optimizer_op
24

25 26
__all__ = []

27

28 29 30 31
class PipelineOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(PipelineOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
32 33 34 35
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
        ]
36
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
37 38 39
        self.global_ring_id = 1
        self.dp_ring_id = 2
        self.start_pipeline_ring_id = 20  # Just a magic number
40 41 42 43 44

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(PipelineOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
45 46
        self.micro_batch_size = user_defined_strategy.pipeline_configs[
            'micro_batch_size']
47
        self.num_microbatches = user_defined_strategy.pipeline_configs[
48
            'accumulate_steps']
49 50
        self.schedule_mode = user_defined_strategy.pipeline_configs[
            'schedule_mode']
51
        self.use_sharding = user_defined_strategy.sharding
52 53

    def _can_apply(self):
54 55 56
        if not self.role_maker._is_collective:
            return False

57 58 59 60
        # FIXME revise for hybrid parallelism
        if self.use_sharding:
            return False

61 62 63 64 65 66
        if self.user_defined_strategy.pipeline == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.pipeline = False
67 68 69 70 71
        dist_strategy.pipeline_configs = {
            "micro_batch_size": 1,
            "accumulate_steps": 1,
            "schedule_mode": "1F1B",
        }
72

73
    def _enable_strategy(self, dist_strategy, context):
74
        dist_strategy.pipeline = True
75 76 77
        dist_strategy.pipeline_configs = {
            "micro_batch_size": 1,
            "accumulate_steps": 1,
78
            "schedule_mode": "1F1B",
79
        }
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def _broadcast_params(self, ring_id):
        block = self.startup_program.global_block()
        param = None
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        if not param: return  # no parameter on this device
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})

    def _get_process_group_info(self):
        # global ring info
        self.global_endpoints = self.endpoints
        self.global_rank = self.rank
        self.global_nranks = self.nranks

        # data parallel ring info
        if self.pipeline_num > 1:
            self.dp_rank = self.rank // self.inner_parallelism
            self.dp_nranks = self.nranks // self.inner_parallelism
            start_index = self.rank % self.inner_parallelism
            self.dp_endpoints = [
                self.endpoints[start_index + i * self.inner_parallelism]
                for i in range(self.pipeline_num)
            ]

    def _init_process_group(self, pipeline_pair, pipeline_ring_map):
        self._get_process_group_info()
        collective_helper = CollectiveHelper(self.role_maker, wait_port=False)
        # Create global ring for all gpus (ring_id = 0)
        collective_helper._init_communicator(
            self.startup_program, self.current_endpoint, self.global_endpoints,
            self.global_rank, self.global_ring_id, True, self.global_ring_id,
            True)
        # Create pipeline rings
        if self.inner_parallelism > 1:
            pipeline_id = self.rank // self.inner_parallelism
            start_index = pipeline_id * self.inner_parallelism
            for pair in pipeline_pair:
                pair_key = pair[0] * 1000 + pair[1]
                ring_id = pipeline_ring_map[pair_key]
                assert ring_id >= self.start_pipeline_ring_id
                first_node = pair[0] + start_index
                second_node = pair[1] + start_index
                if self.rank != first_node and self.rank != second_node:
141 142 143
                    collective_helper._init_communicator(
                        self.startup_program, None, None, None, None, False,
                        self.global_ring_id, True)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                    continue
                pipeline_endpoints = [
                    self.endpoints[first_node], self.endpoints[second_node]
                ]
                pipeline_rank = 0 if self.rank == first_node else 1
                pipeline_nranks = 2
                collective_helper._init_communicator(
                    self.startup_program, self.current_endpoint,
                    pipeline_endpoints, pipeline_rank, ring_id, False,
                    self.global_ring_id, True)

        # Create dp rings
        if self.pipeline_num > 1:
            collective_helper._init_communicator(
                self.startup_program, self.current_endpoint, self.dp_endpoints,
                self.dp_rank, self.dp_ring_id, True, self.global_ring_id, True)
            self._broadcast_params(self.dp_ring_id)

162 163 164 165 166
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
167 168
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.role_maker._worker_index()]
169 170
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
171

172 173 174 175 176 177 178 179 180 181 182 183 184
        self.wrapped_opt = PO(self.inner_opt,
                              num_microbatches=self.num_microbatches)
        orig_startup_program = startup_program if startup_program else fluid.default_startup_program(
        )
        block = loss.block
        program = block.program

        program._pipeline_opt = dict()
        program._pipeline_opt['local_rank'] = self.rank
        program._pipeline_opt['global_ring_id'] = self.global_ring_id
        program._pipeline_opt['ring_id'] = self.start_pipeline_ring_id
        program._pipeline_opt['micro_batch_size'] = self.micro_batch_size
        program._pipeline_opt['schedule_mode'] = self.schedule_mode
185
        program._pipeline_opt['use_sharding'] = False
186 187
        program._pipeline_opt['mp_degree'] = 1
        program._pipeline_opt['mp_rank'] = 0
188
        optimize_ops, params_grads, prog_list, pp_pair, ring_map = self.wrapped_opt.minimize(
189
            loss, startup_program, parameter_list, no_grad_set)
190 191 192
        self.startup_program = orig_startup_program._pipeline_opt[
            'startup_program']
        self.inner_parallelism = program._pipeline_opt['inner_parallelism']
193
        assert self.nranks % self.inner_parallelism == 0
194 195
        assert prog_list
        self.pipeline_num = len(self.endpoints) // self.inner_parallelism
196

197
        self._init_process_group(pp_pair, ring_map)
198

199 200 201 202
        self.main_program_list = prog_list
        self.main_program = program
        if self.pipeline_num > 1:
            self._transpile_main_program(loss)
203
        return optimize_ops, params_grads
204

205 206 207
    def _transpile_main_program(self, loss):
        self._insert_loss_grad_ops(loss, self.pipeline_num)
        self._insert_allreduce_ops(self.dp_ring_id)
208

209
    def _insert_loss_grad_ops(self, loss, pipeline_num):
210 211 212 213
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
214
        block = self.main_program_list[-1].global_block()
215 216 217 218 219 220 221 222 223
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
224
                        'scale': 1.0 / pipeline_num,
225 226 227 228
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, ring_id):
229 230
        block = self.main_program._pipeline_opt['section_program'].global_block(
        )
231 232
        origin_block = self.main_program.global_block()
        grad = None
233
        processed_param_name = set()
234
        first_optimize_op_idx = None
235
        for idx, op in reversed(list(enumerate(block.ops))):
236 237 238 239
            if is_backward_op(op) and not first_optimize_op_idx:
                first_optimize_op_idx = idx + 1
                # no optimize phase
                if first_optimize_op_idx == len(block.ops): return
240
            if is_backward_op(op) and \
241
                    OP_ROLE_VAR_KEY in op.attr_names:
242 243 244 245
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
246
                offset = 0
247
                for i in range(0, len(op_role_var), 2):
248
                    param_name = op_role_var[i]
249
                    param = block.vars[op_role_var[i]]
250 251
                    if param_name in processed_param_name: continue
                    processed_param_name.add(param_name)
252 253 254
                    grad_name = op_role_var[i + 1]
                    if not 'MERGED' in grad_name: grad_name += '@MERGED'
                    grad = block.vars[grad_name]
255 256 257 258 259
                    origin_param = origin_block.vars[op_role_var[i]]
                    if origin_param.is_distributed:
                        continue

                    block._insert_op(
260
                        first_optimize_op_idx + offset,
261
                        type='c_allreduce_sum',
262 263 264 265
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
266 267
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Optimize
268
                        })