Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8caee2ad
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8caee2ad
编写于
8月 10, 2020
作者:
L
lilong12
提交者:
GitHub
8月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【paddle.fleet】add the support for multi-node training for pipeline (#25907)
* add the support for multi-node training
上级
bf2db646
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
262 addition
and
13 deletion
+262
-13
paddle/fluid/operators/collective/c_comm_init_op.cc
paddle/fluid/operators/collective/c_comm_init_op.cc
+10
-3
python/paddle/fleet/meta_optimizers/pipeline_optimizer.py
python/paddle/fleet/meta_optimizers/pipeline_optimizer.py
+173
-9
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/c_comm_init_op.py
python/paddle/fluid/tests/unittests/c_comm_init_op.py
+68
-0
python/paddle/fluid/tests/unittests/test_c_comm_init_op.sh
python/paddle/fluid/tests/unittests/test_c_comm_init_op.sh
+6
-0
python/paddle/fluid/tests/unittests/test_fleet_pipeline_meta_optimizer.py
...uid/tests/unittests/test_fleet_pipeline_meta_optimizer.py
+3
-1
未找到文件。
paddle/fluid/operators/collective/c_comm_init_op.cc
浏览文件 @
8caee2ad
...
...
@@ -52,10 +52,12 @@ class CCommInitOp : public framework::OperatorBase {
int
nranks
=
Attr
<
int
>
(
"nranks"
);
int
rank_id
=
Attr
<
int
>
(
"rank"
);
int
rid
=
Attr
<
int
>
(
"ring_id"
);
int
device_id
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place
).
device
;
if
(
Attr
<
int
>
(
"device_id"
)
>=
0
)
{
device_id
=
Attr
<
int
>
(
"device_id"
);
}
platform
::
NCCLCommContext
::
Instance
().
CreateNCCLComm
(
nccl_id
,
nranks
,
rank_id
,
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place
).
device
,
rid
);
nccl_id
,
nranks
,
rank_id
,
device_id
,
rid
);
#else
PADDLE_THROW
(
"PaddlePaddle should compile with GPU."
);
#endif
...
...
@@ -74,6 +76,11 @@ Initialize collective communicatoin context within this trainer
AddAttr
<
int
>
(
"nranks"
,
"(int) The number of ranks of distributed trainers"
);
AddAttr
<
int
>
(
"rank"
,
"(int) The rank of the trainer in distributed training."
);
AddAttr
<
int
>
(
"device_id"
,
"(int) The deivce_id on which to initialize the communicator."
"Now, you only have to set this attr manually for pipeline "
"training. Otherwise, make it as default."
)
.
SetDefault
(
-
1
);
AddAttr
<
int
>
(
"ring_id"
,
"(int default 0) user specified ring id"
)
.
SetDefault
(
0
);
}
...
...
python/paddle/fleet/meta_optimizers/pipeline_optimizer.py
浏览文件 @
8caee2ad
...
...
@@ -11,12 +11,84 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
,
unique_name
from
..base.private_helper_function
import
wait_server_ready
from
paddle.fluid.optimizer
import
PipelineOptimizer
as
PO
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
,
is_update_op
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
__all__
=
[
"PipelineOptimizer"
]
class
PipelineHelper
(
CollectiveHelper
):
def
__init__
(
self
,
role_maker
,
nrings
=
1
,
wait_port
=
'6174'
):
super
(
PipelineHelper
,
self
).
__init__
(
role_maker
,
nrings
,
wait_port
)
def
_init_communicator
(
self
,
program
,
current_endpoint
,
endpoints
,
rank
,
ring_id
,
wait_port
):
nranks
=
len
(
endpoints
)
other_endpoints
=
endpoints
[:]
other_endpoints
.
remove
(
current_endpoint
)
if
rank
==
0
and
wait_port
:
wait_server_ready
(
other_endpoints
)
block
=
program
.
global_block
()
nccl_id_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
block
.
append_op
(
type
=
'c_gen_nccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
nccl_id_var
},
attrs
=
{
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
rank
,
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
,
'device_id'
:
OpRole
.
Forward
})
def
_broadcast_params
(
self
):
block
=
self
.
startup_program
.
global_block
()
ring_id
=
0
for
param
in
block
.
iter_parameters
():
if
param
.
is_distributed
:
continue
block
.
append_op
(
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
for
ring_id
in
range
(
self
.
nrings
):
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
class
PipelineOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
PipelineOptimizer
,
self
).
__init__
(
optimizer
)
...
...
@@ -40,15 +112,6 @@ class PipelineOptimizer(MetaOptimizerBase):
dist_strategy
.
pipeline
=
False
dist_strategy
.
pipeline_configs
=
{
"micro_batch"
:
1
}
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
return
self
.
wrapped_opt
.
backward
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
,
callbacks
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
...
...
@@ -57,4 +120,105 @@ class PipelineOptimizer(MetaOptimizerBase):
optimize_ops
,
params_grads
,
prog_list
=
\
self
.
wrapped_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
if
self
.
role_maker
.
worker_num
()
==
1
:
return
optimize_ops
,
params_grads
endpoints
=
self
.
role_maker
.
get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
worker_index
()]
self
.
startup_program
=
startup_program
if
startup_program
is
None
:
self
.
startup_program
=
fluid
.
default_startup_program
()
assert
prog_list
self
.
main_program_list
=
prog_list
self
.
main_program
=
loss
.
block
.
program
nranks
=
len
(
endpoints
)
self
.
nranks
=
nranks
self
.
nrings
=
len
(
self
.
main_program_list
)
self
.
rank
=
self
.
role_maker
.
worker_index
()
self
.
endpoints
=
endpoints
self
.
current_endpoint
=
current_endpoint
pipeline_helper
=
PipelineHelper
(
self
.
role_maker
,
nrings
=
self
.
nrings
)
pipeline_helper
.
update_startup_program
(
self
.
startup_program
)
self
.
_transpile_main_program
()
return
optimize_ops
,
params_grads
def
_transpile_main_program
(
self
):
self
.
_insert_loss_grad_ops
()
for
ring_id
in
range
(
self
.
nrings
):
self
.
_insert_allreduce_ops
(
ring_id
)
def
_insert_loss_grad_ops
(
self
):
"""
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
"""
block
=
self
.
main_program_list
[
self
.
nrings
-
1
][
'program'
].
global_block
(
)
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_loss_grad_op
(
op
):
loss_grad_var
=
block
.
vars
[
op
.
output_arg_names
[
0
]]
block
.
_insert_op
(
idx
+
1
,
type
=
'scale'
,
inputs
=
{
'X'
:
loss_grad_var
},
outputs
=
{
'Out'
:
loss_grad_var
},
attrs
=
{
'scale'
:
1.0
/
self
.
nranks
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
def
_insert_allreduce_ops
(
self
,
ring_id
):
block
=
self
.
main_program_list
[
ring_id
][
'program'
].
global_block
()
origin_block
=
self
.
main_program
.
global_block
()
grad
=
None
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
all_attrs
()[
OP_ROLE_VAR_KEY
]
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
offset
=
idx
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param
=
block
.
vars
[
op_role_var
[
i
]]
grad
=
block
.
vars
[
op_role_var
[
i
+
1
]]
origin_param
=
origin_block
.
vars
[
op_role_var
[
i
]]
if
origin_param
.
is_distributed
:
continue
if
offset
==
idx
:
offset
+=
1
block
.
_insert_op
(
offset
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
offset
+=
1
block
.
_insert_op
(
offset
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
if
grad
is
None
:
return
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
block
.
_insert_op
(
idx
+
ring_id
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
8caee2ad
...
...
@@ -22,6 +22,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_simple_dist_transpiler)
list
(
APPEND MIXED_DIST_TEST_OPS test_recv_save_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_transpiler_ops
)
list
(
APPEND MIXED_DIST_TEST_OPS test_launch
)
list
(
APPEND MIXED_DIST_TEST_OPS test_c_comm_init_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_launch_ps
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_async
)
list
(
APPEND MIXED_DIST_TEST_OPS test_communicator_geo
)
...
...
@@ -403,6 +404,7 @@ if(WITH_DISTRIBUTE)
if
(
WITH_GPU
)
# NOTE. test_launch only work in gpu collective mode
bash_test_modules
(
test_launch START_BASH test_launch.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_c_comm_init_op START_BASH test_c_comm_init_op.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
py_test_modules
(
test_fleet_checkpoint MODULES test_fleet_checkpoint
)
endif
()
...
...
python/paddle/fluid/tests/unittests/c_comm_init_op.py
0 → 100644
浏览文件 @
8caee2ad
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
os
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fleet.base.private_helper_function
import
wait_server_ready
class
TestCCommInitOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
).
split
(
','
)
self
.
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
self
.
nranks
=
len
(
self
.
endpoints
)
self
.
rank
=
self
.
endpoints
.
index
(
self
.
current_endpoint
)
self
.
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
))
self
.
place
=
fluid
.
CUDAPlace
(
self
.
gpu_id
)
self
.
exe
=
fluid
.
Executor
(
self
.
place
)
self
.
endpoints
.
remove
(
self
.
current_endpoint
)
self
.
other_endpoints
=
self
.
endpoints
if
self
.
rank
==
0
:
wait_server_ready
(
self
.
other_endpoints
)
def
test_specifying_devices
(
self
):
program
=
fluid
.
Program
()
block
=
program
.
global_block
()
nccl_id_var
=
block
.
create_var
(
name
=
fluid
.
unique_name
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
fluid
.
core
.
VarDesc
.
VarType
.
RAW
)
block
.
append_op
(
type
=
'c_gen_nccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
nccl_id_var
},
attrs
=
{
'rank'
:
self
.
rank
,
'endpoint'
:
self
.
current_endpoint
,
'other_endpoints'
:
self
.
other_endpoints
})
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
self
.
nranks
,
'rank'
:
self
.
rank
,
'ring_id'
:
0
,
'device_id'
:
self
.
gpu_id
})
self
.
exe
.
run
(
program
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_c_comm_init_op.sh
0 → 100644
浏览文件 @
8caee2ad
#!/bin/bash
set
-e
# use default values
# FIXME: random fails on Unknown command lines -c (or -m).
launch_py
=
${
PADDLE_BINARY_DIR
}
/python/paddle/distributed/launch.py
CUDA_VISIBLE_DEVICES
=
0,1 python
${
launch_py
}
c_comm_init_op.py
python/paddle/fluid/tests/unittests/test_fleet_pipeline_meta_optimizer.py
浏览文件 @
8caee2ad
...
...
@@ -19,7 +19,9 @@ import os
class
TestFleetMetaOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001,127.0.0.1:36002"
def
test_pipeline_optimizer
(
self
):
import
paddle.fleet
as
fleet
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录