activation.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .. import functional as F
from paddle.nn import Layer

__all__ = []


class ReLU(Layer):
    """
U
ustiniankw 已提交
23

24
    Sparse ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

    .. math::

        ReLU(x) = max(x, 0)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
42 43 44

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
45
            relu = paddle.sparse.nn.ReLU()
46 47
            out = relu(sparse_x)
            # [0., 0., 1.]
U
ustiniankw 已提交
48

49 50 51
    """

    def __init__(self, name=None):
52
        super().__init__()
53 54 55 56 57 58 59 60
        self._name = name

    def forward(self, x):
        return F.relu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
61 62 63


class Softmax(Layer):
64
    r"""
U
ustiniankw 已提交
65

66
    Sparse Softmax Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
67 68

    Note:
69
        Only support axis=-1 for SparseCsrTensor, which is faster when read data
70 71
        by row (axis=-1).

72 73
    Transform x to dense matix, and :math:`i` is row index, :math:`j` is column index.
    If axis=-1, We have:
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}

    Parameters:
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: SparseCooTensor / SparseCsrTensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            paddle.seed(2022)

            mask = paddle.rand((3, 4)) < 0.7
            x = paddle.rand((3, 4)) * mask
            print(x)
            # Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.08325022, 0.27030438, 0.        , 0.83883715],
            #         [0.        , 0.95856029, 0.24004589, 0.        ],
            #         [0.14500992, 0.17088132, 0.        , 0.        ]])

            csr = x.to_sparse_csr()
            print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 3, 5, 7],
            #        cols=[0, 1, 3, 1, 2, 0, 1],
            #        values=[0.08325022, 0.27030438, 0.83883715, 0.95856029, 0.24004589,
            #                0.14500992, 0.17088132])
109

110
            softmax = paddle.sparse.nn.Softmax()
111
            out = softmax(csr)
112 113 114 115 116 117
            print(out)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 3, 5, 7],
            #        cols=[0, 1, 3, 1, 2, 0, 1],
            #        values=[0.23070428, 0.27815846, 0.49113727, 0.67227983, 0.32772022,
            #                0.49353254, 0.50646752])
118 119 120
    """

    def __init__(self, axis=-1, name=None):
121
        super().__init__()
122 123 124 125 126 127 128 129 130
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
131 132 133 134


class ReLU6(Layer):
    """
U
ustiniankw 已提交
135

136 137 138 139
    Sparse ReLU6 Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

140
        ReLU6(x) = min(max(0,x), 6)
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 8.])
            sparse_x = dense_x.to_sparse_coo(1)
157
            relu6 = paddle.sparse.nn.ReLU6()
158
            out = relu6(sparse_x)
U
ustiniankw 已提交
159

160 161 162
    """

    def __init__(self, name=None):
163
        super().__init__()
164 165 166 167 168 169 170 171 172 173 174
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


class LeakyReLU(Layer):
175
    r"""
U
ustiniankw 已提交
176

177
    Sparse Leaky ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    .. math::

        LeakyReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

    Parameters:
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 5.])
            sparse_x = dense_x.to_sparse_coo(1)
206
            leaky_relu = paddle.sparse.nn.LeakyReLU(0.5)
207
            out = leaky_relu(sparse_x)
U
ustiniankw 已提交
208

209 210 211
    """

    def __init__(self, negative_slope=0.01, name=None):
212
        super().__init__()
213 214 215 216 217 218 219 220 221
        self._negative_slope = negative_slope
        self._name = name

    def forward(self, x):
        return F.leaky_relu(x, self._negative_slope, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str