prroi_pool_op.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/prroi_pool_op.h"
16

17 18 19 20 21
#include <memory>

namespace paddle {
namespace operators {

22
using Tensor = phi::DenseTensor;
23 24 25 26 27 28 29 30 31 32 33 34

class PRROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), "
             "the input of PRROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
             "W is the width.");
    AddInput("ROIs",
35
             "(phi::DenseTensor), "
36
             "ROIs (Regions of Interest) to pool over. "
37
             "should be a 2-D phi::DenseTensor of shape (num_rois, 4) "
38 39 40 41
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
42 43 44 45 46
    AddInput("BatchRoINums",
             "(Tensor), "
             "1-D tensor with shape [N], the number of"
             " rois for each image in batch, where N is the batch size")
        .AsDispensable();
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    AddOutput("Out",
              "(Tensor), "
              "the output of PRROIPoolOp is a 4-D Tensor with shape "
              "(num_rois, output_channels, pooled_h, pooled_w).");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
**PRROIPool Operator**

Precise region of interest pooling (also known as PRROIPooling) is to perform
 bilinear interpolation average pooling method for RoI Pooling.

Please refer to https://arxiv.org/abs/1807.11590 for more details.

    )Doc");
  }
};

class PRROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
82 83 84 85
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasInput("ROIs"), "Input", "ROIs", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Input", "Out", "prroi_pool");

86 87 88
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

89 90
    PADDLE_ENFORCE_EQ(input_dims.size(),
                      4,
91 92 93
                      platform::errors::InvalidArgument(
                          "The format of input tensor is NCHW"));
    PADDLE_ENFORCE_EQ(
94 95
        rois_dims.size(),
        2,
96
        platform::errors::InvalidArgument(
97
            "ROIs should be a 2-D phi::DenseTensor of shape (num_rois, 4) "
98 99
            "given as [(x1, y1, x2, y2), ...]"));
    PADDLE_ENFORCE_EQ(
100 101
        rois_dims[1],
        4,
102
        platform::errors::InvalidArgument(
103
            "ROIs should be a 2-D phi::DenseTensor of shape (num_rois, 4) "
104
            "given as [(x1, y1, x2, y2), ...]"));
105 106 107 108
    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

109 110
    PADDLE_ENFORCE_GT(pooled_height,
                      0,
111 112
                      platform::errors::InvalidArgument(
                          "The pooled output height must be greater than 0"));
113 114
    PADDLE_ENFORCE_GT(pooled_width,
                      0,
115 116
                      platform::errors::InvalidArgument(
                          "The pooled output width must be greater than 0"));
117 118
    PADDLE_ENFORCE_GT(spatial_scale,
                      0.0f,
119 120
                      platform::errors::InvalidArgument(
                          "The spatial scale must greater than 0."));
121 122 123

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
124
    out_dims[1] = input_dims[1];
125 126
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
127 128 129

    if (ctx->HasInput("BatchRoINums")) {
      auto rois_batch_index = ctx->GetInputDim("BatchRoINums");
130 131
      PADDLE_ENFORCE_EQ(rois_batch_index[0],
                        input_dims[0],
132 133 134 135
                        platform::errors::InvalidArgument(
                            "The length of BatchRoINums should equal to  "
                            "first dim of inputs(X)"));
    }
136 137 138 139 140 141
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
142 143 144
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
145 146 147 148 149 150 151 152
  }
};

class PRROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
153 154 155 156 157 158 159 160
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
                   "Output",
                   framework::GradVarName("X"),
                   "prroi_pool");
161
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
162
    ctx->SetOutputDim(framework::GradVarName("ROIs"), ctx->GetInputDim("ROIs"));
163 164 165 166 167
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
168 169 170
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
171 172 173
  }
};

H
hong 已提交
174 175
template <typename T>
class PRROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
176
 public:
H
hong 已提交
177
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
178 179

 protected:
180
  void Apply(GradOpPtr<T> op) const override {
181
    op->SetType("prroi_pool_grad");
H
hong 已提交
182 183 184
    op->SetInput("X", this->Input("X"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("ROIs", this->Input("ROIs"));
185
    op->SetInput("BatchRoINums", this->Input("BatchRoINums"));
H
hong 已提交
186 187 188 189
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("ROIs"), this->InputGrad("ROIs"));
    op->SetAttrMap(this->Attrs());
190 191 192 193 194 195
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
196 197 198
REGISTER_OPERATOR(prroi_pool,
                  ops::PRROIPoolOp,
                  ops::PRROIPoolOpMaker,
H
hong 已提交
199 200
                  ops::PRROIPoolGradMaker<paddle::framework::OpDesc>,
                  ops::PRROIPoolGradMaker<paddle::imperative::OpBase>);
201
REGISTER_OPERATOR(prroi_pool_grad, ops::PRROIPoolGradOp);
L
Leo Chen 已提交
202 203 204 205 206 207 208 209 210 211
REGISTER_OP_CPU_KERNEL(prroi_pool,
                       ops::CPUPRROIPoolOpKernel<phi::CPUContext, float>,
                       ops::CPUPRROIPoolOpKernel<phi::CPUContext, double>,
                       ops::CPUPRROIPoolOpKernel<phi::CPUContext, int>,
                       ops::CPUPRROIPoolOpKernel<phi::CPUContext, int64_t>);
REGISTER_OP_CPU_KERNEL(prroi_pool_grad,
                       ops::CPUPRROIPoolGradOpKernel<phi::CPUContext, float>,
                       ops::CPUPRROIPoolGradOpKernel<phi::CPUContext, double>,
                       ops::CPUPRROIPoolGradOpKernel<phi::CPUContext, int>,
                       ops::CPUPRROIPoolGradOpKernel<phi::CPUContext, int64_t>);