prroi_pool_op.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/prroi_pool_op.h"
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <memory>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class PRROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), "
             "the input of PRROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
             "W is the width.");
    AddInput("ROIs",
             "(LoDTensor), "
             "ROIs (Regions of Interest) to pool over. "
             "should be a 2-D LoDTensor of shape (num_rois, 4) "
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
43 44 45 46 47
    AddInput("BatchRoINums",
             "(Tensor), "
             "1-D tensor with shape [N], the number of"
             " rois for each image in batch, where N is the batch size")
        .AsDispensable();
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    AddOutput("Out",
              "(Tensor), "
              "the output of PRROIPoolOp is a 4-D Tensor with shape "
              "(num_rois, output_channels, pooled_h, pooled_w).");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
**PRROIPool Operator**

Precise region of interest pooling (also known as PRROIPooling) is to perform
 bilinear interpolation average pooling method for RoI Pooling.

Please refer to https://arxiv.org/abs/1807.11590 for more details.

    )Doc");
  }
};

class PRROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
83 84 85 86
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasInput("ROIs"), "Input", "ROIs", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Input", "Out", "prroi_pool");

87 88 89
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

90 91
    PADDLE_ENFORCE_EQ(input_dims.size(),
                      4,
92 93 94
                      platform::errors::InvalidArgument(
                          "The format of input tensor is NCHW"));
    PADDLE_ENFORCE_EQ(
95 96
        rois_dims.size(),
        2,
97 98 99 100
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
    PADDLE_ENFORCE_EQ(
101 102
        rois_dims[1],
        4,
103 104 105
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
106 107 108 109
    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

110 111
    PADDLE_ENFORCE_GT(pooled_height,
                      0,
112 113
                      platform::errors::InvalidArgument(
                          "The pooled output height must be greater than 0"));
114 115
    PADDLE_ENFORCE_GT(pooled_width,
                      0,
116 117
                      platform::errors::InvalidArgument(
                          "The pooled output width must be greater than 0"));
118 119
    PADDLE_ENFORCE_GT(spatial_scale,
                      0.0f,
120 121
                      platform::errors::InvalidArgument(
                          "The spatial scale must greater than 0."));
122 123 124

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
125
    out_dims[1] = input_dims[1];
126 127
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
128 129 130

    if (ctx->HasInput("BatchRoINums")) {
      auto rois_batch_index = ctx->GetInputDim("BatchRoINums");
131 132
      PADDLE_ENFORCE_EQ(rois_batch_index[0],
                        input_dims[0],
133 134 135 136
                        platform::errors::InvalidArgument(
                            "The length of BatchRoINums should equal to  "
                            "first dim of inputs(X)"));
    }
137 138 139 140 141 142
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
143 144 145
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
146 147 148 149 150 151 152 153
  }
};

class PRROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
154 155 156 157 158 159 160 161
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
                   "Output",
                   framework::GradVarName("X"),
                   "prroi_pool");
162
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
163
    ctx->SetOutputDim(framework::GradVarName("ROIs"), ctx->GetInputDim("ROIs"));
164 165 166 167 168
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
169 170 171
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
172 173 174
  }
};

H
hong 已提交
175 176
template <typename T>
class PRROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
177
 public:
H
hong 已提交
178
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
179 180

 protected:
181
  void Apply(GradOpPtr<T> op) const override {
182
    op->SetType("prroi_pool_grad");
H
hong 已提交
183 184 185
    op->SetInput("X", this->Input("X"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("ROIs", this->Input("ROIs"));
186
    op->SetInput("BatchRoINums", this->Input("BatchRoINums"));
H
hong 已提交
187 188 189 190
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("ROIs"), this->InputGrad("ROIs"));
    op->SetAttrMap(this->Attrs());
191 192 193 194 195 196
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
197 198 199
REGISTER_OPERATOR(prroi_pool,
                  ops::PRROIPoolOp,
                  ops::PRROIPoolOpMaker,
H
hong 已提交
200 201
                  ops::PRROIPoolGradMaker<paddle::framework::OpDesc>,
                  ops::PRROIPoolGradMaker<paddle::imperative::OpBase>);
202
REGISTER_OPERATOR(prroi_pool_grad, ops::PRROIPoolGradOp);
L
Leo Chen 已提交
203 204 205 206 207 208 209 210 211 212
REGISTER_OP_CPU_KERNEL(prroi_pool,
                       ops::CPUPRROIPoolOpKernel<phi::CPUContext, float>,
                       ops::CPUPRROIPoolOpKernel<phi::CPUContext, double>,
                       ops::CPUPRROIPoolOpKernel<phi::CPUContext, int>,
                       ops::CPUPRROIPoolOpKernel<phi::CPUContext, int64_t>);
REGISTER_OP_CPU_KERNEL(prroi_pool_grad,
                       ops::CPUPRROIPoolGradOpKernel<phi::CPUContext, float>,
                       ops::CPUPRROIPoolGradOpKernel<phi::CPUContext, double>,
                       ops::CPUPRROIPoolGradOpKernel<phi::CPUContext, int>,
                       ops::CPUPRROIPoolGradOpKernel<phi::CPUContext, int64_t>);