prroi_pool_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/prroi_pool_op.h"
#include <memory>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class PRROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), "
             "the input of PRROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
             "W is the width.");
    AddInput("ROIs",
             "(LoDTensor), "
             "ROIs (Regions of Interest) to pool over. "
             "should be a 2-D LoDTensor of shape (num_rois, 4) "
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
    AddOutput("Out",
              "(Tensor), "
              "the output of PRROIPoolOp is a 4-D Tensor with shape "
              "(num_rois, output_channels, pooled_h, pooled_w).");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
**PRROIPool Operator**

Precise region of interest pooling (also known as PRROIPooling) is to perform
 bilinear interpolation average pooling method for RoI Pooling.

Please refer to https://arxiv.org/abs/1807.11590 for more details.

    )Doc");
  }
};

class PRROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of op(PRROIPool) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("ROIs"), true,
                      "Input(ROIs) of op(PRROIPool) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of op(PRROIPool) should not be null.");
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

    PADDLE_ENFORCE_EQ(input_dims.size(), 4,
                      "The format of input tensor is NCHW");
    PADDLE_ENFORCE_EQ(rois_dims.size(), 2,
                      "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                      "given as [(x1, y1, x2, y2), ...]");
    PADDLE_ENFORCE_EQ(rois_dims[1], 4,
                      "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                      "given as [(x1, y1, x2, y2), ...]");

    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

    PADDLE_ENFORCE_GT(pooled_height, 0,
                      "The pooled output height must be greater than 0");
    PADDLE_ENFORCE_GT(pooled_width, 0,
                      "The pooled output width must be greater than 0");
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
                      "The spatial scale must greater than 0.");

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
108
    out_dims[1] = input_dims[1];
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
  }
};

class PRROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "The gradient of Out should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      "The gradient of X should not be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
132
    ctx->SetOutputDim(framework::GradVarName("ROIs"), ctx->GetInputDim("ROIs"));
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
  }
};

class PRROIPoolGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("prroi_pool_grad");
    op->SetInput("X", Input("X"));
152
    op->SetInput("Out", Output("Out"));
153 154 155
    op->SetInput("ROIs", Input("ROIs"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
156
    op->SetOutput(framework::GradVarName("ROIs"), InputGrad("ROIs"));
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    op->SetAttrMap(Attrs());
    return op;
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(prroi_pool, ops::PRROIPoolOp, ops::PRROIPoolOpMaker,
                  ops::PRROIPoolGradDescMaker);
REGISTER_OPERATOR(prroi_pool_grad, ops::PRROIPoolGradOp);
REGISTER_OP_CPU_KERNEL(
    prroi_pool,
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    prroi_pool_grad,
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, double>);