while_op.cc 31.0 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yang Yang(Tony) 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
16
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/operators/controlflow/control_flow_op_helper.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
Y
Yang Yang(Tony) 已提交
21

22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
W
wanghuancoder 已提交
25 26 27 28 29 30 31 32
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
class VarDesc;
}  // namespace framework
}  // namespace paddle

Y
Yang Yang(Tony) 已提交
33 34 35 36 37
namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;

S
sneaxiy 已提交
38 39 40 41 42 43 44 45 46 47 48
namespace {  // NOLINT
static std::string GetSkipEagerDeletionVarsDebugString(
    const std::vector<std::string> &vars) {
  std::string str = "Skip " + std::to_string(vars.size()) +
                    " var(s) in eager deletion mode: ";
  for (auto &var : vars) {
    str.append(var);
    str.push_back(' ');
  }
  return str;
}
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

static void TransferVariablePlace(const framework::Scope *scope,
                                  const std::string &var_name,
                                  const phi::Place &dst_place,
                                  const platform::DeviceContext &dev_ctx) {
  framework::Variable *var = scope->FindVar(var_name);
  if (var == nullptr) {
    VLOG(4) << "[TransferVariablePlace]"
            << "lost in_var: " << var_name;
    return;
  }
  if (var->Type() != framework::proto::VarType::LOD_TENSOR) {
    VLOG(10) << "[TransferVariablePlace]" << var_name << " type changed:"
             << framework::TransToPhiDataType(
                    framework::ToVarType(var->Type()));
    return;
  }
  phi::DenseTensor *t = var->GetMutable<phi::DenseTensor>();
  if (t->place() == dst_place) {
    VLOG(10) << "[TransferVariablePlace]"
             << "no need transfer: " << var_name;
    return;
  }

  phi::DenseTensor *new_t = new phi::DenseTensor;
  framework::TensorCopy(*t, dst_place, new_t);
  dev_ctx.Wait();

  t->set_meta(new_t->meta());
  t->ResetHolder(new_t->Holder());

  VLOG(4) << "[TransferVariablePlace]" << var_name
          << " place: " << new_t->place();
}

84
}  // namespace
Y
Yang Yang(Tony) 已提交
85 86 87

class WhileOp : public framework::OperatorBase {
 public:
88 89
  WhileOp(const std::string &type,
          const framework::VariableNameMap &inputs,
Y
Yang Yang(Tony) 已提交
90 91 92 93
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

94 95 96
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
97 98 99
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)),
                            platform::errors::NotFound(
                                "Input(Condition) of WhileOp is not found."));
100

101
    auto &cond = scope.FindVar(Input(kCondition))->Get<phi::DenseTensor>();
102
    PADDLE_ENFORCE_EQ(
103 104
        cond.numel(),
        1,
105
        platform::errors::InvalidArgument(
106 107 108
            "The numel of Input(Condition) of WhileOp must be 1. But now "
            "the Condition's numel is ",
            cond.numel(),
109
            ".\n"));
Y
Yang Yang(Tony) 已提交
110

111 112 113 114 115 116
#ifdef PADDLE_WITH_MKLDNN
    // (jczaja) Executor on being destroyed clears oneDNN cache and
    // resets registered model data layout. This is unwanted for nested
    // Executors (executors declared inside control ops)
    platform::DontClearMKLDNNCache(dev_place);
#endif
Y
Yu Yang 已提交
117
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
118

119 120 121 122
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);

Y
Yang Yang(Tony) 已提交
123
    auto *program = block->Program();
124 125 126 127
    bool is_test = Attr<bool>("is_test");

    std::set<std::string> no_copy_var_names;
    if (!is_test) {
128 129 130 131 132 133 134 135 136 137 138 139 140
      // set all persistable parameters into no_copy_var_names.
      auto *global_block = block;

      while (global_block->ID() != 0)
        global_block = global_block->ParentBlock();
      auto all_vars = global_block->AllVars();
      std::for_each(all_vars.begin(),
                    all_vars.end(),
                    [&no_copy_var_names](framework::VarDesc *var) {
                      if (var->IsParameter())
                        no_copy_var_names.insert(var->Name());
                    });

141 142 143 144 145 146 147 148 149 150 151 152 153
      const std::vector<framework::OpDesc *> &all_ops = block->AllOps();
      for (const framework::OpDesc *op : all_ops) {
        const framework::VariableNameMap &input_var_names = op->Inputs();
        const framework::VariableNameMap &output_var_names = op->Outputs();
        for (auto &ipt : input_var_names) {
          for (const std::string &var_name : ipt.second) {
            if (StrInVaraiableNameMap(var_name, output_var_names)) {
              no_copy_var_names.insert(var_name);
            }
          }
        }
      }
    }
Y
Yang Yang(Tony) 已提交
154 155 156

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();
157 158 159 160 161 162 163 164 165 166 167

    if (step_scopes->size() > 0) {
      platform::DeviceContextPool::Instance().Get(dev_place)->Wait();
      for (auto &s : *step_scopes) {
        if (scope.HasKid(s)) {
          scope.DeleteScope(s);
        }
      }
      step_scopes->clear();
    }

168 169
    PADDLE_ENFORCE_EQ(step_scopes->size(),
                      0,
170 171
                      platform::errors::PreconditionNotMet(
                          "The Output(StepScope) of WhileOp should be empty."));
X
Xin Pan 已提交
172

173
    bool cond_data = GetCondData(cond);
S
sneaxiy 已提交
174
    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
175
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
S
fix bug  
sneaxiy 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    // note(lvyongkang): The assign op in while loop may change the place of
    // variable. However, InterpreterCore fix the kernel of every ops during its
    // first run. A cpu tensor may become gpu tensor after first run. This will
    // lead to segmetation fault when it's used in a cpu kernel. Here we record
    // the place of every inputs and restore their place after
    // InterpreterCore.run().
    std::map<std::string, phi::Place> input_var_original_places;
    for (const auto &in_name : Inputs(kX)) {
      framework::Variable *var = scope.FindVar(in_name);
      if (var == nullptr) {
        VLOG(4) << "[while op]"
                << "input not found:" << in_name;
      }

      if (var->Type() == framework::proto::VarType::LOD_TENSOR) {
        input_var_original_places[in_name] =
            (var->Get<phi::DenseTensor>()).place();
      } else {
        VLOG(10) << "[while op]"
                 << "skip backup input " << in_name << " type:"
                 << framework::TransToPhiDataType(
                        framework::ToVarType(var->Type()));
      }
    }

    if (FLAGS_control_flow_use_new_executor) {
      LOG_FIRST_N(INFO, 1) << "[ControlFlow][WhileOp] New Executor is Running.";
      if (!core_ || !platform::is_same_place(core_->GetPlace(), dev_place)) {
        std::set<std::string> skip_gc_vars(skip_vars.begin(), skip_vars.end());
        framework::Scope placeholder;  // Don't care if it's valid, just for
                                       // initialize InterpreterCore
        core_.reset(new framework::InterpreterCore(
            dev_place,
            *block,
            skip_gc_vars,
            &placeholder,
            /* used_for_jit */ false,
            /* used_for_control_flow_op */ true));
      }
    } else {
      if (!executor_ ||
          !platform::is_same_place(executor_->GetPlace(), dev_place)) {
        executor_.reset(new framework::Executor(dev_place));
        ctx_ = executor_->Prepare(*program, block->ID(), skip_vars);
      }
    }

224
    if (!is_test) {
225
      while (cond_data) {
226 227
        auto &current_scope = scope.NewScope();
        step_scopes->push_back(&current_scope);
228 229 230 231 232 233 234

        std::vector<std::string> rename_vars;
        for (const std::string &input_var_name : Inputs(kX)) {
          if (no_copy_var_names.find(input_var_name) ==
              no_copy_var_names.end()) {
            std::string input_var_rename = input_var_name + kSuffix;
            framework::Variable *input_var = scope.FindVar(input_var_name);
235
            if (input_var->IsType<phi::DenseTensor>()) {
236
              rename_vars.push_back(input_var_rename);
237
              auto input_var_tensor = input_var->Get<phi::DenseTensor>();
238
              auto *rename_input_var_tensor =
239 240
                  current_scope.Var(input_var_rename)
                      ->GetMutable<phi::DenseTensor>();
241 242
              framework::TensorCopy(
                  input_var_tensor, dev_place, rename_input_var_tensor);
243 244 245 246
              rename_input_var_tensor->set_lod(input_var_tensor.lod());
            }
          }
        }
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        if (FLAGS_control_flow_use_new_executor) {
          BuildScopeForControlFlowOp(*core_, *block, &current_scope);
          core_->reset_scope(&current_scope);
          core_->Run({}, false);

          // restore inputs place
          for (const auto &n : input_var_original_places) {
            const std::string &in_name = n.first;
            const phi::Place &original_place = n.second;
            // input vars exist in `scope` not `current_scope`
            TransferVariablePlace(&scope, in_name, original_place, dev_ctx);
          }

        } else {
          executor_->RunPreparedContext(
              ctx_.get(), &current_scope, false, true, true);
        }
264 265 266 267 268 269

        for (auto &var_rename : rename_vars) {
          std::string input_var_name =
              var_rename.substr(0, var_rename.size() - strlen(kSuffix));
          current_scope.Rename(var_rename, input_var_name);
        }
270 271
        cond_data = GetCondData(
            scope.FindVar(Input(kCondition))->Get<phi::DenseTensor>());
272 273
      }
    } else {
Y
Yang Yang(Tony) 已提交
274
      auto &current_scope = scope.NewScope();
275 276 277 278 279 280 281 282

      if (FLAGS_control_flow_use_new_executor) {
        BuildScopeForControlFlowOp(*core_, *block, &current_scope);
        core_->reset_scope(&current_scope);
      } else {
        executor_->CreateVariables(*program, &current_scope, block->ID());
      }

283
      while (cond_data) {
284 285
        for (auto &name : current_scope.LocalVarNames()) {
          auto *var = current_scope.Var(name);
286
          if (var->IsType<phi::DenseTensor>()) {
287
            // Clear all lod information for all lod_tensors.
288
            auto *t = var->GetMutable<phi::DenseTensor>();
289 290 291 292 293 294 295 296
            framework::LoD empty_lod;
            t->set_lod(empty_lod);
          } else if (var->IsType<framework::LoDTensorArray>()) {
            // Clear elements of all tensor arrays.
            auto *t = var->GetMutable<framework::LoDTensorArray>();
            t->clear();
          }
        }
297 298 299 300 301 302 303 304

        if (FLAGS_control_flow_use_new_executor) {
          core_->Run({}, false);
        } else {
          executor_->RunPreparedContext(
              ctx_.get(), &current_scope, false, false, false);
        }

305 306
        cond_data = GetCondData(
            scope.FindVar(Input(kCondition))->Get<phi::DenseTensor>());
C
chengduo 已提交
307
      }
H
hong 已提交
308

309
      scope.DeleteScope(&current_scope);
Y
Yang Yang(Tony) 已提交
310 311
    }
  }
312 313 314 315 316

 private:
  mutable std::shared_ptr<framework::Executor> executor_{nullptr};
  mutable std::unique_ptr<framework::ExecutorPrepareContext> ctx_{nullptr};
  mutable std::shared_ptr<framework::InterpreterCore> core_{nullptr};
Y
Yang Yang(Tony) 已提交
317 318 319 320
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
321
  void Make() override {
Y
Yang Yu 已提交
322
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
323 324 325 326 327 328 329
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
330
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
331
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
332
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
333 334 335 336 337
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
338 339
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
340 341 342 343
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Y
Yang Yang(Tony) 已提交
344 345 346 347 348 349 350
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
351 352
  WhileGradOp(const std::string &type,
              const framework::VariableNameMap &inputs,
Y
Yang Yang(Tony) 已提交
353 354 355 356
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

357 358 359
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
360
    PADDLE_ENFORCE_EQ(
361 362
        Attr<bool>("is_test"),
        false,
363 364
        platform::errors::InvalidArgument(
            "WhileGradOp is only callable when is_test is false."));
365 366 367
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
368

Y
Yu Yang 已提交
369
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
370
    auto *program = block->Program();
H
hong 已提交
371
    auto *parent_block = block->ParentBlock();
S
sneaxiy 已提交
372 373

    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
374
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
Y
Yang Yang(Tony) 已提交
375 376 377 378

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
379 380 381 382
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

383 384
    PADDLE_ENFORCE_EQ(outside_og_names.size(),
                      inside_og_names.size(),
385 386 387 388 389 390
                      platform::errors::InvalidArgument(
                          "The number of original output gradient names "
                          "does not match the number of backward input "
                          "gradient names. The number of Backward input "
                          "names is %d and the numbers of original output "
                          "gradient names is %d.",
391 392
                          outside_og_names.size(),
                          inside_og_names.size()));
Y
Yang Yang(Tony) 已提交
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    if (FLAGS_control_flow_use_new_executor) {
      LOG_FIRST_N(INFO, 1)
          << "[ControlFlow][WhileGradOp] New Executor is Running.";
      if (!core_ || !platform::is_same_place(core_->GetPlace(), dev_place)) {
        std::set<std::string> skip_gc_vars(skip_vars.begin(), skip_vars.end());
        framework::Scope placeholder;  // Don't care if it's valid, just for
                                       // initialize InterpreterCore
        core_.reset(new framework::InterpreterCore(
            dev_place,
            *block,
            skip_gc_vars,
            &placeholder,
            /* used_for_jit */ false,
            /* used_for_control_flow_op */ true));
      }
    } else {
      if (!executor_ ||
          !platform::is_same_place(executor_->GetPlace(), dev_place)) {
        executor_.reset(new framework::Executor(dev_place));
        ctx_ = executor_->Prepare(*program, block->ID(), skip_vars);
      }
    }

Y
Yang Yang(Tony) 已提交
417
    for (auto cur_scope_iter = step_scopes->rbegin();
418 419
         cur_scope_iter != step_scopes->rend();
         ++cur_scope_iter) {
M
minqiyang 已提交
420 421
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
Y
Yang Yang(Tony) 已提交
422 423 424 425 426
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
M
minqiyang 已提交
427 428
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
C
chengduo 已提交
429 430 431 432
        if (scope.FindVar(outside_og_name) == nullptr) {
          continue;
        }

H
hong 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto &og_outside = *scope.FindVar(outside_og_name);
          if (og_outside.IsType<phi::DenseTensor>() &&
              !og_outside.GetMutable<phi::DenseTensor>()->IsInitialized()) {
            auto *var_desc = parent_block->FindVarRecursive(outside_og_name);
            PADDLE_ENFORCE_NOT_NULL(var_desc,
                                    platform::errors::PreconditionNotMet(
                                        "Var `%s` is not found in parent "
                                        "block, can't fill constant.",
                                        outside_og_name));
            auto shape = var_desc->GetShape();
            VLOG(8) << "Found uninitialized tensor " << outside_og_name
                    << " in step 0, fill it with 0.0f. dims="
                    << phi::make_ddim(shape);
            framework::AttributeMap attrs;
            attrs["dtype"] = var_desc->GetDataType();
            attrs["shape"] = phi::vectorize<int>(phi::make_ddim(shape));
            attrs["value"] = 0.0f;

            auto var_name = outside_og_name;
            auto zero_op =
                framework::OpRegistry::CreateOp("fill_constant",
                                                framework::VariableNameMap{},
                                                {{"Out", {var_name}}},
                                                attrs);
            zero_op->Run(scope, dev_place);
          }
        }

462 463
        auto &og_outside = *scope.FindVar(outside_og_name);
        auto &og_inside = *cur_scope.Var(inside_og_name);
464 465 466
        if (og_outside.IsType<phi::DenseTensor>()) {
          auto &outside_tensor = og_outside.Get<phi::DenseTensor>();
          auto &inside_tensor = *og_inside.GetMutable<phi::DenseTensor>();
Y
Yang Yang(Tony) 已提交
467 468
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
S
sneaxiy 已提交
469
        } else if (og_outside.IsType<framework::LoDTensorArray>()) {
470 471
          auto outside_array =
              og_outside.GetMutable<framework::LoDTensorArray>();
Y
Yang Yang(Tony) 已提交
472
          auto &inside_array =
473
              *og_inside.GetMutable<framework::LoDTensorArray>();
474 475 476
          inside_array.clear();
          inside_array.resize(outside_array->size());
          VLOG(8) << outside_og_name << " size = " << outside_array->size();
Y
Yang Yang(Tony) 已提交
477 478

          for (size_t j = 0; j < inside_array.size(); ++j) {
479 480 481 482 483 484 485
            if (!outside_array->at(j).IsInitialized()) {
              outside_array->at(j).Resize({0});
            }
            VLOG(8) << j << " " << outside_array->at(j).numel();
            if (outside_array->at(j).numel() != 0) {
              inside_array[j].set_lod(outside_array->at(j).lod());
              inside_array[j].ShareDataWith(outside_array->at(j));
Y
Yang Yang(Tony) 已提交
486
            } else {
487
              PADDLE_ENFORCE_EQ(
488 489
                  inside_array[j].numel(),
                  0,
490 491 492
                  platform::errors::InvalidArgument(
                      "The numel of %d-th element of var %s (LoDTensorArray) "
                      "in while block must be 0, but received its numel is %d.",
493 494 495
                      j,
                      inside_og_name,
                      inside_array[j].numel()));
Y
Yang Yang(Tony) 已提交
496 497
            }
          }
C
chengduo 已提交
498
        } else {
499
          PADDLE_THROW(platform::errors::Unimplemented(
500 501
              "Currently only support phi::DenseTensor and "
              "phi::DenseTensorArray in "
502
              "WhileGradOp."));
Y
Yang Yang(Tony) 已提交
503 504
        }
      }
505 506 507 508 509 510 511 512 513

      if (FLAGS_control_flow_use_new_executor) {
        BuildScopeForControlFlowOp(*core_, *block, *cur_scope_iter);
        core_->reset_scope(*cur_scope_iter);
        core_->Run({}, false);
      } else {
        executor_->RunPreparedContext(
            ctx_.get(), *cur_scope_iter, false, true, true);
      }
Y
Yang Yang(Tony) 已提交
514

C
chengduo 已提交
515 516 517
      // The Outputs(kXGRAD) contains the names of the gradient of parameters
      // and inputs.
      auto &pg_ig_names = Outputs(kXGRAD);
Y
Yang Yu 已提交
518
      auto &p_names = Inputs(kX);
519 520
      PADDLE_ENFORCE_EQ(pg_ig_names.size(),
                        p_names.size(),
521 522 523 524 525
                        platform::errors::PreconditionNotMet(
                            "The number of names in Outputs(X@GRAD) does not "
                            "match the number of names in Inputs(X). The "
                            "number of names in Outputs(X@GRAD) is %d and "
                            "the number of names in Inputs(X) is %d.",
526 527
                            pg_ig_names.size(),
                            p_names.size()));
C
chengduo 已提交
528 529
      for (size_t param_id = 0; param_id < pg_ig_names.size(); ++param_id) {
        if (pg_ig_names[param_id] == framework::kEmptyVarName) {
530
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
531 532
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
533

C
chengduo 已提交
534 535 536 537
        // for some grad_op, their input doesn't have gradient,
        // for example lookup_table_grad_op, the input(Idx) doesn't have
        // gradient.
        auto pg_ig_var = cur_scope.FindVar(inside_grad_name);
538
        PADDLE_ENFORCE_NOT_NULL(
539 540 541
            pg_ig_var,
            platform::errors::NotFound("Variable %s is not found.",
                                       inside_grad_name));
C
chengduo 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        if (pg_ig_var->IsType<framework::LoDTensorArray>()) {
          auto pg_ig_lod_t_arr =
              pg_ig_var->GetMutable<framework::LoDTensorArray>();
          bool empty = true;
          for (auto &each : *pg_ig_lod_t_arr) {
            if (each.numel() != 0) {
              empty = false;
              break;
            }
          }
          if (empty) {
            LOG(WARNING) << pg_ig_names[param_id]
                         << " is not found in cur_scope.";
            continue;
          }
        }

Y
Yang Yang(Tony) 已提交
559
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
560 561 562 563 564 565 566 567
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

H
hong 已提交
568 569 570 571
        auto is_var_input_and_output =
            std::find(outside_og_names.begin(),
                      outside_og_names.end(),
                      pg_ig_names[param_id]) != outside_og_names.end();
572

Y
Yang Yang(Tony) 已提交
573 574 575
        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
576
          PADDLE_ENFORCE_NOT_NULL(
577 578 579
              var,
              platform::errors::NotFound("Variable %s is not found.",
                                         inside_grad_name));
580
          PADDLE_ENFORCE_EQ(
C
chengduoZH 已提交
581
              var->IsType<framework::LoDTensorArray>() ||
582
                  var->IsType<phi::DenseTensor>(),
583 584 585
              true,
              platform::errors::InvalidArgument(
                  "Currently the type of var only can be LoDTensorArray, "
586
                  "or phi::DenseTensor, but the received var[%s] is %s.",
587 588
                  inside_grad_name,
                  framework::ToTypeName(var->Type())));
C
chengduo 已提交
589

H
hong 已提交
590
          if (!is_var_input_and_output && var->IsType<phi::DenseTensor>()) {
591
            auto &inside_tensor = var->Get<phi::DenseTensor>();
Y
Yang Yang(Tony) 已提交
592
            framework::AttributeMap attrs;
593 594
            attrs["dtype"] =
                framework::TransToProtoVarType(inside_tensor.dtype());
595
            attrs["shape"] = phi::vectorize<int>(inside_tensor.dims());
Y
Yang Yang(Tony) 已提交
596 597
            attrs["value"] = 0.0f;

C
chengduo 已提交
598
            auto var_name = pg_ig_names[param_id];
599 600 601 602 603
            auto zero_op =
                framework::OpRegistry::CreateOp("fill_constant",
                                                framework::VariableNameMap{},
                                                {{"Out", {var_name}}},
                                                attrs);
D
dzhwinter 已提交
604
            zero_op->Run(scope, dev_place);
605 606
            scope.FindVar(var_name)->GetMutable<phi::DenseTensor>()->set_lod(
                inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
607 608
          }
        }
H
hong 已提交
609
        if (!is_var_input_and_output) {
610 611
          auto new_inside_name = cur_scope.Rename(inside_grad_name);
          auto sum_op = framework::OpRegistry::CreateOp(
612 613
              "sum",
              {{"X", {pg_ig_names[param_id], new_inside_name}}},
614 615 616 617
              {{"Out", {pg_ig_names[param_id]}}},
              framework::AttributeMap{{"use_mkldnn", {false}}});
          sum_op->Run(cur_scope, dev_place);
          cur_scope.Rename(new_inside_name, inside_grad_name);
H
hong 已提交
618 619
        } else {
          ShareVariable(cur_scope, scope, pg_ig_names[param_id]);
620
        }
Y
Yang Yang(Tony) 已提交
621
      }
622 623
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
624
    }
625
    step_scopes->clear();
Y
Yang Yang(Tony) 已提交
626
  }
627

H
hong 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
  void ShareVariable(const framework::Scope &source,
                     const framework::Scope &dest,
                     std::string name) const {
    auto from_var = source.FindVar(name);
    auto to_var = dest.FindVar(name);
    if (from_var->IsType<phi::DenseTensor>()) {
      if (from_var->Get<phi::DenseTensor>().IsInitialized()) {
        to_var->GetMutable<phi::DenseTensor>()->ShareDataWith(
            from_var->Get<phi::DenseTensor>());
      }
    } else if (from_var->IsType<framework::LoDTensorArray>()) {
      auto from_arr = from_var->GetMutable<framework::LoDTensorArray>();
      auto to_arr = to_var->GetMutable<framework::LoDTensorArray>();
      to_arr->clear();
      to_arr->resize(from_arr->size());
      for (size_t i = 0; i < to_arr->size(); ++i) {
        if (from_arr->at(i).IsInitialized()) {
          to_arr->at(i).ShareDataWith(from_arr->at(i));
        }
      }
    }
  }

651 652 653 654
 private:
  mutable std::shared_ptr<framework::Executor> executor_{nullptr};
  mutable std::unique_ptr<framework::ExecutorPrepareContext> ctx_{nullptr};
  mutable std::shared_ptr<framework::InterpreterCore> core_{nullptr};
Y
Yang Yang(Tony) 已提交
655 656
};

H
hong 已提交
657 658
template <typename T>
class WhileGradOpMaker : public framework::SingleGradOpMaker<T> {
Y
Yang Yang(Tony) 已提交
659
 public:
H
hong 已提交
660
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yang Yang(Tony) 已提交
661 662

 protected:
663
  void Apply(GradOpPtr<T> while_grad) const override {
F
Update  
fengjiayi 已提交
664
    while_grad->SetType("while_grad");
H
hong 已提交
665 666 667
    while_grad->SetInput(kX, this->Input(kX));
    while_grad->SetInput(kOutputs, this->Output(kOutputs));
    while_grad->SetInput(kStepScopes, this->Output(kStepScopes));
F
Update  
fengjiayi 已提交
668 669

    auto *grad_block = this->grad_block_[0];
Y
Yu Yang 已提交
670 671
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
672 673 674

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
675 676 677 678
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
679 680
      }
    }
H
hong 已提交
681 682
    auto igs = this->InputGrad(kX, /*do not drop empty gradient*/ false);

683
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
684
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
M
minqiyang 已提交
685
        VLOG(8) << "Ignore " << each_ig;
686 687 688
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
689
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
690 691 692 693

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
H
hong 已提交
694 695
    block_ins.reserve(this->Input(kX).size() + this->Output(kOutputs).size());
    for (auto &p : this->Input(kX)) {
F
fengjiayi 已提交
696 697
      block_ins.insert(p);
    }
H
hong 已提交
698
    for (auto &o : this->Output(kOutputs)) {
F
fengjiayi 已提交
699 700
      block_ins.insert(o);
    }
Y
Yu Yang 已提交
701
    std::unordered_set<std::string> output_grads;
H
hong 已提交
702

F
Update  
fengjiayi 已提交
703 704 705 706
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
Y
Yu Yang 已提交
707 708 709

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
710
        if (block_ins.find(input_name) != block_ins.end() ||
Y
Yu Yang 已提交
711 712
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
Y
Yang Yang(Tony) 已提交
713 714
          continue;
        }
Y
Yu Yang 已提交
715
        output_grads.insert(input_name);
Y
Yang Yang(Tony) 已提交
716
      }
F
Update  
fengjiayi 已提交
717
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
718
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
719 720
      }
    }
Y
Yang Yang(Tony) 已提交
721

Y
Yu Yang 已提交
722 723
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
724 725
    std::copy(
        output_grads.begin(), output_grads.end(), output_grads_list.begin());
Y
Yu Yang 已提交
726
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
727 728

    while_grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
729
    while_grad->SetBlockAttr(kStepBlock, grad_block);
Y
Yang Yang(Tony) 已提交
730 731
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
Y
Yu Yang 已提交
732
    while_grad->SetAttr("original_output_grad", output_grads_list);
Y
Yang Yang(Tony) 已提交
733

S
sneaxiy 已提交
734
    while_grad->SetAttr(kSkipEagerDeletionVars, std::vector<std::string>());
Y
Yang Yang(Tony) 已提交
735 736 737
  }
};

738 739
class WhileGradOpVarTypeInference
    : public framework::StaticGraphVarTypeInference {
Y
Yang Yang(Tony) 已提交
740
 public:
M
minqiyang 已提交
741
  void operator()(framework::InferVarTypeContext *ctx) const override {
742 743
    auto p_names = Input(ctx, kX);
    auto pg_ig_names = Output(ctx, framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
744 745

    for (size_t i = 0; i < p_names.size(); ++i) {
746
      if (HasVar(ctx, pg_ig_names[i])) {
M
minqiyang 已提交
747
        VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i]
748 749 750
                << " type: " << GetType(ctx, p_names[i]);
        SetType(ctx, pg_ig_names[i], GetType(ctx, p_names[i]));
        SetDataType(ctx, pg_ig_names[i], GetDataType(ctx, p_names[i]));
Y
Yang Yang(Tony) 已提交
751 752 753 754 755 756 757 758
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
759 760
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
761 762
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));
C
chengduo 已提交
763
    auto pg_ig_names = ctx->Outputs(kXGRAD);
764 765
    auto in_var_ptrs = ctx->GetInputVarPtrs(kX);
    auto out_var_ptrs = ctx->GetOutputVarPtrs(kXGRAD);
766 767
    PADDLE_ENFORCE_EQ(in_var_ptrs.size(),
                      out_var_ptrs.size(),
768 769 770
                      platform::errors::InvalidArgument(
                          "The size of Inputs(X) must be the same as "
                          "the size of Outputs(X@GRAD)."));
X
Xin Pan 已提交
771 772

    for (size_t i = 0; i < in_var_ptrs.size(); ++i) {
C
chengduo 已提交
773
      if (pg_ig_names[i] == framework::kEmptyVarName) {
Y
Yang Yang(Tony) 已提交
774 775
        continue;
      }
776
      framework::VarDesc *in_var =
R
Ruibiao Chen 已提交
777 778
          PADDLE_GET(framework::VarDesc *, in_var_ptrs[i]);
      PADDLE_GET(framework::VarDesc *, out_var_ptrs[i])
779
          ->SetShape(in_var->GetShape());
Y
Yang Yang(Tony) 已提交
780 781 782 783
    }
  }
};

Y
Yang Yang(Tony) 已提交
784 785 786
}  // namespace operators
}  // namespace paddle

H
hong 已提交
787
REGISTER_OPERATOR(
788 789 790
    while,
    paddle::operators::WhileOp,
    paddle::operators::WhileOpMaker,
H
hong 已提交
791
    paddle::operators::WhileGradOpMaker<paddle::framework::OpDesc>);
792 793
REGISTER_OPERATOR(while_grad,
                  paddle::operators::WhileGradOp,
Y
Yang Yang(Tony) 已提交
794 795
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);