while_op.cc 28.7 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yang Yang(Tony) 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
16
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/operators/controlflow/control_flow_op_helper.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
Y
Yang Yang(Tony) 已提交
21

22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
W
wanghuancoder 已提交
25 26 27 28 29 30 31 32
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
class VarDesc;
}  // namespace framework
}  // namespace paddle

Y
Yang Yang(Tony) 已提交
33 34 35 36 37
namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;

S
sneaxiy 已提交
38 39 40 41 42 43 44 45 46 47 48
namespace {  // NOLINT
static std::string GetSkipEagerDeletionVarsDebugString(
    const std::vector<std::string> &vars) {
  std::string str = "Skip " + std::to_string(vars.size()) +
                    " var(s) in eager deletion mode: ";
  for (auto &var : vars) {
    str.append(var);
    str.push_back(' ');
  }
  return str;
}
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

static void TransferVariablePlace(const framework::Scope *scope,
                                  const std::string &var_name,
                                  const phi::Place &dst_place,
                                  const platform::DeviceContext &dev_ctx) {
  framework::Variable *var = scope->FindVar(var_name);
  if (var == nullptr) {
    VLOG(4) << "[TransferVariablePlace]"
            << "lost in_var: " << var_name;
    return;
  }
  if (var->Type() != framework::proto::VarType::LOD_TENSOR) {
    VLOG(10) << "[TransferVariablePlace]" << var_name << " type changed:"
             << framework::TransToPhiDataType(
                    framework::ToVarType(var->Type()));
    return;
  }
  phi::DenseTensor *t = var->GetMutable<phi::DenseTensor>();
  if (t->place() == dst_place) {
    VLOG(10) << "[TransferVariablePlace]"
             << "no need transfer: " << var_name;
    return;
  }

  phi::DenseTensor *new_t = new phi::DenseTensor;
  framework::TensorCopy(*t, dst_place, new_t);
  dev_ctx.Wait();

  t->set_meta(new_t->meta());
  t->ResetHolder(new_t->Holder());

  VLOG(4) << "[TransferVariablePlace]" << var_name
          << " place: " << new_t->place();
}

84
}  // namespace
Y
Yang Yang(Tony) 已提交
85 86 87

class WhileOp : public framework::OperatorBase {
 public:
88 89
  WhileOp(const std::string &type,
          const framework::VariableNameMap &inputs,
Y
Yang Yang(Tony) 已提交
90 91 92 93
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

94 95 96
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
97 98 99
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)),
                            platform::errors::NotFound(
                                "Input(Condition) of WhileOp is not found."));
100

101
    auto &cond = scope.FindVar(Input(kCondition))->Get<phi::DenseTensor>();
102
    PADDLE_ENFORCE_EQ(
103 104
        cond.dims(),
        phi::make_ddim({1}),
105 106 107
        platform::errors::InvalidArgument(
            "The shape of Input(Condition) of WhileOp must be 1. But now "
            "the Condition's shape is ",
108 109
            cond.dims().to_str(),
            ".\n"));
Y
Yang Yang(Tony) 已提交
110

111 112 113 114 115 116
#ifdef PADDLE_WITH_MKLDNN
    // (jczaja) Executor on being destroyed clears oneDNN cache and
    // resets registered model data layout. This is unwanted for nested
    // Executors (executors declared inside control ops)
    platform::DontClearMKLDNNCache(dev_place);
#endif
Y
Yu Yang 已提交
117
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
118

119 120 121 122
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);

Y
Yang Yang(Tony) 已提交
123
    auto *program = block->Program();
124 125 126 127
    bool is_test = Attr<bool>("is_test");

    std::set<std::string> no_copy_var_names;
    if (!is_test) {
128 129 130 131 132 133 134 135 136 137 138 139 140
      // set all persistable parameters into no_copy_var_names.
      auto *global_block = block;

      while (global_block->ID() != 0)
        global_block = global_block->ParentBlock();
      auto all_vars = global_block->AllVars();
      std::for_each(all_vars.begin(),
                    all_vars.end(),
                    [&no_copy_var_names](framework::VarDesc *var) {
                      if (var->IsParameter())
                        no_copy_var_names.insert(var->Name());
                    });

141 142 143 144 145 146 147 148 149 150 151 152 153
      const std::vector<framework::OpDesc *> &all_ops = block->AllOps();
      for (const framework::OpDesc *op : all_ops) {
        const framework::VariableNameMap &input_var_names = op->Inputs();
        const framework::VariableNameMap &output_var_names = op->Outputs();
        for (auto &ipt : input_var_names) {
          for (const std::string &var_name : ipt.second) {
            if (StrInVaraiableNameMap(var_name, output_var_names)) {
              no_copy_var_names.insert(var_name);
            }
          }
        }
      }
    }
Y
Yang Yang(Tony) 已提交
154 155 156

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();
157 158 159 160 161 162 163 164 165 166 167

    if (step_scopes->size() > 0) {
      platform::DeviceContextPool::Instance().Get(dev_place)->Wait();
      for (auto &s : *step_scopes) {
        if (scope.HasKid(s)) {
          scope.DeleteScope(s);
        }
      }
      step_scopes->clear();
    }

168 169
    PADDLE_ENFORCE_EQ(step_scopes->size(),
                      0,
170 171
                      platform::errors::PreconditionNotMet(
                          "The Output(StepScope) of WhileOp should be empty."));
X
Xin Pan 已提交
172

173
    bool cond_data = GetCondData(cond);
S
sneaxiy 已提交
174
    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
175
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
S
fix bug  
sneaxiy 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    // note(lvyongkang): The assign op in while loop may change the place of
    // variable. However, InterpreterCore fix the kernel of every ops during its
    // first run. A cpu tensor may become gpu tensor after first run. This will
    // lead to segmetation fault when it's used in a cpu kernel. Here we record
    // the place of every inputs and restore their place after
    // InterpreterCore.run().
    std::map<std::string, phi::Place> input_var_original_places;
    for (const auto &in_name : Inputs(kX)) {
      framework::Variable *var = scope.FindVar(in_name);
      if (var == nullptr) {
        VLOG(4) << "[while op]"
                << "input not found:" << in_name;
      }

      if (var->Type() == framework::proto::VarType::LOD_TENSOR) {
        input_var_original_places[in_name] =
            (var->Get<phi::DenseTensor>()).place();
      } else {
        VLOG(10) << "[while op]"
                 << "skip backup input " << in_name << " type:"
                 << framework::TransToPhiDataType(
                        framework::ToVarType(var->Type()));
      }
    }

    if (FLAGS_control_flow_use_new_executor) {
      LOG_FIRST_N(INFO, 1) << "[ControlFlow][WhileOp] New Executor is Running.";
      if (!core_ || !platform::is_same_place(core_->GetPlace(), dev_place)) {
        std::set<std::string> skip_gc_vars(skip_vars.begin(), skip_vars.end());
        framework::Scope placeholder;  // Don't care if it's valid, just for
                                       // initialize InterpreterCore
        core_.reset(new framework::InterpreterCore(
            dev_place,
            *block,
            skip_gc_vars,
            &placeholder,
            /* used_for_jit */ false,
            /* used_for_control_flow_op */ true));
      }
    } else {
      if (!executor_ ||
          !platform::is_same_place(executor_->GetPlace(), dev_place)) {
        executor_.reset(new framework::Executor(dev_place));
        ctx_ = executor_->Prepare(*program, block->ID(), skip_vars);
      }
    }

224
    if (!is_test) {
225
      while (cond_data) {
226 227
        auto &current_scope = scope.NewScope();
        step_scopes->push_back(&current_scope);
228 229 230 231 232 233 234

        std::vector<std::string> rename_vars;
        for (const std::string &input_var_name : Inputs(kX)) {
          if (no_copy_var_names.find(input_var_name) ==
              no_copy_var_names.end()) {
            std::string input_var_rename = input_var_name + kSuffix;
            framework::Variable *input_var = scope.FindVar(input_var_name);
235
            if (input_var->IsType<phi::DenseTensor>()) {
236
              rename_vars.push_back(input_var_rename);
237
              auto input_var_tensor = input_var->Get<phi::DenseTensor>();
238
              auto *rename_input_var_tensor =
239 240
                  current_scope.Var(input_var_rename)
                      ->GetMutable<phi::DenseTensor>();
241 242
              framework::TensorCopy(
                  input_var_tensor, dev_place, rename_input_var_tensor);
243 244 245 246
              rename_input_var_tensor->set_lod(input_var_tensor.lod());
            }
          }
        }
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        if (FLAGS_control_flow_use_new_executor) {
          BuildScopeForControlFlowOp(*core_, *block, &current_scope);
          core_->reset_scope(&current_scope);
          core_->Run({}, false);

          // restore inputs place
          for (const auto &n : input_var_original_places) {
            const std::string &in_name = n.first;
            const phi::Place &original_place = n.second;
            // input vars exist in `scope` not `current_scope`
            TransferVariablePlace(&scope, in_name, original_place, dev_ctx);
          }

        } else {
          executor_->RunPreparedContext(
              ctx_.get(), &current_scope, false, true, true);
        }
264 265 266 267 268 269

        for (auto &var_rename : rename_vars) {
          std::string input_var_name =
              var_rename.substr(0, var_rename.size() - strlen(kSuffix));
          current_scope.Rename(var_rename, input_var_name);
        }
270 271
        cond_data = GetCondData(
            scope.FindVar(Input(kCondition))->Get<phi::DenseTensor>());
272 273
      }
    } else {
Y
Yang Yang(Tony) 已提交
274
      auto &current_scope = scope.NewScope();
275 276 277 278 279 280 281 282

      if (FLAGS_control_flow_use_new_executor) {
        BuildScopeForControlFlowOp(*core_, *block, &current_scope);
        core_->reset_scope(&current_scope);
      } else {
        executor_->CreateVariables(*program, &current_scope, block->ID());
      }

283
      while (cond_data) {
284 285
        for (auto &name : current_scope.LocalVarNames()) {
          auto *var = current_scope.Var(name);
286
          if (var->IsType<phi::DenseTensor>()) {
287
            // Clear all lod information for all lod_tensors.
288
            auto *t = var->GetMutable<phi::DenseTensor>();
289 290 291 292 293 294 295 296
            framework::LoD empty_lod;
            t->set_lod(empty_lod);
          } else if (var->IsType<framework::LoDTensorArray>()) {
            // Clear elements of all tensor arrays.
            auto *t = var->GetMutable<framework::LoDTensorArray>();
            t->clear();
          }
        }
297 298 299 300 301 302 303 304

        if (FLAGS_control_flow_use_new_executor) {
          core_->Run({}, false);
        } else {
          executor_->RunPreparedContext(
              ctx_.get(), &current_scope, false, false, false);
        }

305 306
        cond_data = GetCondData(
            scope.FindVar(Input(kCondition))->Get<phi::DenseTensor>());
C
chengduo 已提交
307
      }
308
      scope.DeleteScope(&current_scope);
Y
Yang Yang(Tony) 已提交
309 310
    }
  }
311 312 313 314 315

 private:
  mutable std::shared_ptr<framework::Executor> executor_{nullptr};
  mutable std::unique_ptr<framework::ExecutorPrepareContext> ctx_{nullptr};
  mutable std::shared_ptr<framework::InterpreterCore> core_{nullptr};
Y
Yang Yang(Tony) 已提交
316 317 318 319
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
320
  void Make() override {
Y
Yang Yu 已提交
321
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
322 323 324 325 326 327 328
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
329
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
330
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
331
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
332 333 334 335 336
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
337 338
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
339 340 341 342
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Y
Yang Yang(Tony) 已提交
343 344 345 346 347 348 349
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
350 351
  WhileGradOp(const std::string &type,
              const framework::VariableNameMap &inputs,
Y
Yang Yang(Tony) 已提交
352 353 354 355
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

356 357 358
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
359
    PADDLE_ENFORCE_EQ(
360 361
        Attr<bool>("is_test"),
        false,
362 363
        platform::errors::InvalidArgument(
            "WhileGradOp is only callable when is_test is false."));
364 365 366
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
367

Y
Yu Yang 已提交
368
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
369
    auto *program = block->Program();
S
sneaxiy 已提交
370 371

    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
372
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
Y
Yang Yang(Tony) 已提交
373 374 375 376

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
377 378 379 380
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

381 382
    PADDLE_ENFORCE_EQ(outside_og_names.size(),
                      inside_og_names.size(),
383 384 385 386 387 388
                      platform::errors::InvalidArgument(
                          "The number of original output gradient names "
                          "does not match the number of backward input "
                          "gradient names. The number of Backward input "
                          "names is %d and the numbers of original output "
                          "gradient names is %d.",
389 390
                          outside_og_names.size(),
                          inside_og_names.size()));
Y
Yang Yang(Tony) 已提交
391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    if (FLAGS_control_flow_use_new_executor) {
      LOG_FIRST_N(INFO, 1)
          << "[ControlFlow][WhileGradOp] New Executor is Running.";
      if (!core_ || !platform::is_same_place(core_->GetPlace(), dev_place)) {
        std::set<std::string> skip_gc_vars(skip_vars.begin(), skip_vars.end());
        framework::Scope placeholder;  // Don't care if it's valid, just for
                                       // initialize InterpreterCore
        core_.reset(new framework::InterpreterCore(
            dev_place,
            *block,
            skip_gc_vars,
            &placeholder,
            /* used_for_jit */ false,
            /* used_for_control_flow_op */ true));
      }
    } else {
      if (!executor_ ||
          !platform::is_same_place(executor_->GetPlace(), dev_place)) {
        executor_.reset(new framework::Executor(dev_place));
        ctx_ = executor_->Prepare(*program, block->ID(), skip_vars);
      }
    }

Y
Yang Yang(Tony) 已提交
415
    for (auto cur_scope_iter = step_scopes->rbegin();
416 417
         cur_scope_iter != step_scopes->rend();
         ++cur_scope_iter) {
M
minqiyang 已提交
418 419
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
Y
Yang Yang(Tony) 已提交
420 421 422 423 424
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
M
minqiyang 已提交
425 426
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
C
chengduo 已提交
427 428 429 430
        if (scope.FindVar(outside_og_name) == nullptr) {
          continue;
        }

431 432
        auto &og_outside = *scope.FindVar(outside_og_name);
        auto &og_inside = *cur_scope.Var(inside_og_name);
433 434 435
        if (og_outside.IsType<phi::DenseTensor>()) {
          auto &outside_tensor = og_outside.Get<phi::DenseTensor>();
          auto &inside_tensor = *og_inside.GetMutable<phi::DenseTensor>();
Y
Yang Yang(Tony) 已提交
436 437
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
S
sneaxiy 已提交
438
        } else if (og_outside.IsType<framework::LoDTensorArray>()) {
439 440
          auto outside_array =
              og_outside.GetMutable<framework::LoDTensorArray>();
Y
Yang Yang(Tony) 已提交
441
          auto &inside_array =
442
              *og_inside.GetMutable<framework::LoDTensorArray>();
443 444 445
          inside_array.clear();
          inside_array.resize(outside_array->size());
          VLOG(8) << outside_og_name << " size = " << outside_array->size();
Y
Yang Yang(Tony) 已提交
446 447

          for (size_t j = 0; j < inside_array.size(); ++j) {
448 449 450 451 452 453 454
            if (!outside_array->at(j).IsInitialized()) {
              outside_array->at(j).Resize({0});
            }
            VLOG(8) << j << " " << outside_array->at(j).numel();
            if (outside_array->at(j).numel() != 0) {
              inside_array[j].set_lod(outside_array->at(j).lod());
              inside_array[j].ShareDataWith(outside_array->at(j));
Y
Yang Yang(Tony) 已提交
455
            } else {
456
              PADDLE_ENFORCE_EQ(
457 458
                  inside_array[j].numel(),
                  0,
459 460 461
                  platform::errors::InvalidArgument(
                      "The numel of %d-th element of var %s (LoDTensorArray) "
                      "in while block must be 0, but received its numel is %d.",
462 463 464
                      j,
                      inside_og_name,
                      inside_array[j].numel()));
Y
Yang Yang(Tony) 已提交
465 466
            }
          }
C
chengduo 已提交
467
        } else {
468
          PADDLE_THROW(platform::errors::Unimplemented(
469 470
              "Currently only support phi::DenseTensor and "
              "phi::DenseTensorArray in "
471
              "WhileGradOp."));
Y
Yang Yang(Tony) 已提交
472 473
        }
      }
474 475 476 477 478 479 480 481 482

      if (FLAGS_control_flow_use_new_executor) {
        BuildScopeForControlFlowOp(*core_, *block, *cur_scope_iter);
        core_->reset_scope(*cur_scope_iter);
        core_->Run({}, false);
      } else {
        executor_->RunPreparedContext(
            ctx_.get(), *cur_scope_iter, false, true, true);
      }
Y
Yang Yang(Tony) 已提交
483

C
chengduo 已提交
484 485 486
      // The Outputs(kXGRAD) contains the names of the gradient of parameters
      // and inputs.
      auto &pg_ig_names = Outputs(kXGRAD);
Y
Yang Yu 已提交
487
      auto &p_names = Inputs(kX);
488 489
      PADDLE_ENFORCE_EQ(pg_ig_names.size(),
                        p_names.size(),
490 491 492 493 494
                        platform::errors::PreconditionNotMet(
                            "The number of names in Outputs(X@GRAD) does not "
                            "match the number of names in Inputs(X). The "
                            "number of names in Outputs(X@GRAD) is %d and "
                            "the number of names in Inputs(X) is %d.",
495 496
                            pg_ig_names.size(),
                            p_names.size()));
C
chengduo 已提交
497 498
      for (size_t param_id = 0; param_id < pg_ig_names.size(); ++param_id) {
        if (pg_ig_names[param_id] == framework::kEmptyVarName) {
499
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
500 501
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
502

C
chengduo 已提交
503 504 505 506
        // for some grad_op, their input doesn't have gradient,
        // for example lookup_table_grad_op, the input(Idx) doesn't have
        // gradient.
        auto pg_ig_var = cur_scope.FindVar(inside_grad_name);
507
        PADDLE_ENFORCE_NOT_NULL(
508 509 510
            pg_ig_var,
            platform::errors::NotFound("Variable %s is not found.",
                                       inside_grad_name));
C
chengduo 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        if (pg_ig_var->IsType<framework::LoDTensorArray>()) {
          auto pg_ig_lod_t_arr =
              pg_ig_var->GetMutable<framework::LoDTensorArray>();
          bool empty = true;
          for (auto &each : *pg_ig_lod_t_arr) {
            if (each.numel() != 0) {
              empty = false;
              break;
            }
          }
          if (empty) {
            LOG(WARNING) << pg_ig_names[param_id]
                         << " is not found in cur_scope.";
            continue;
          }
        }

Y
Yang Yang(Tony) 已提交
528
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
529 530 531 532 533 534 535 536
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

537 538 539
        auto var_iter = std::find(outside_og_names.begin(),
                                  outside_og_names.end(),
                                  pg_ig_names[param_id]);
540

Y
Yang Yang(Tony) 已提交
541 542 543
        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
544
          PADDLE_ENFORCE_NOT_NULL(
545 546 547
              var,
              platform::errors::NotFound("Variable %s is not found.",
                                         inside_grad_name));
548
          PADDLE_ENFORCE_EQ(
C
chengduoZH 已提交
549
              var->IsType<framework::LoDTensorArray>() ||
550
                  var->IsType<phi::DenseTensor>(),
551 552 553
              true,
              platform::errors::InvalidArgument(
                  "Currently the type of var only can be LoDTensorArray, "
554
                  "or phi::DenseTensor, but the received var[%s] is %s.",
555 556
                  inside_grad_name,
                  framework::ToTypeName(var->Type())));
C
chengduo 已提交
557

558
          if ((var_iter == outside_og_names.end()) &&
559
              var->IsType<phi::DenseTensor>()) {
560
            auto &inside_tensor = var->Get<phi::DenseTensor>();
Y
Yang Yang(Tony) 已提交
561
            framework::AttributeMap attrs;
562 563
            attrs["dtype"] =
                framework::TransToProtoVarType(inside_tensor.dtype());
564
            attrs["shape"] = phi::vectorize<int>(inside_tensor.dims());
Y
Yang Yang(Tony) 已提交
565 566
            attrs["value"] = 0.0f;

C
chengduo 已提交
567
            auto var_name = pg_ig_names[param_id];
568 569 570 571 572
            auto zero_op =
                framework::OpRegistry::CreateOp("fill_constant",
                                                framework::VariableNameMap{},
                                                {{"Out", {var_name}}},
                                                attrs);
D
dzhwinter 已提交
573
            zero_op->Run(scope, dev_place);
574 575
            scope.FindVar(var_name)->GetMutable<phi::DenseTensor>()->set_lod(
                inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
576 577
          }
        }
578 579 580 581 582 583
        auto var_outside = scope.FindVar(pg_ig_names[param_id]);
        if ((var_iter == outside_og_names.end()) ||
            ((var_iter != outside_og_names.end()) &&
             var_outside->IsType<framework::LoDTensorArray>())) {
          auto new_inside_name = cur_scope.Rename(inside_grad_name);
          auto sum_op = framework::OpRegistry::CreateOp(
584 585
              "sum",
              {{"X", {pg_ig_names[param_id], new_inside_name}}},
586 587 588 589 590
              {{"Out", {pg_ig_names[param_id]}}},
              framework::AttributeMap{{"use_mkldnn", {false}}});
          sum_op->Run(cur_scope, dev_place);
          cur_scope.Rename(new_inside_name, inside_grad_name);
        }
Y
Yang Yang(Tony) 已提交
591
      }
592 593
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
594
    }
595
    step_scopes->clear();
Y
Yang Yang(Tony) 已提交
596
  }
597 598 599 600 601

 private:
  mutable std::shared_ptr<framework::Executor> executor_{nullptr};
  mutable std::unique_ptr<framework::ExecutorPrepareContext> ctx_{nullptr};
  mutable std::shared_ptr<framework::InterpreterCore> core_{nullptr};
Y
Yang Yang(Tony) 已提交
602 603
};

H
hong 已提交
604 605
template <typename T>
class WhileGradOpMaker : public framework::SingleGradOpMaker<T> {
Y
Yang Yang(Tony) 已提交
606
 public:
H
hong 已提交
607
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yang Yang(Tony) 已提交
608 609

 protected:
610
  void Apply(GradOpPtr<T> while_grad) const override {
F
Update  
fengjiayi 已提交
611
    while_grad->SetType("while_grad");
H
hong 已提交
612 613 614
    while_grad->SetInput(kX, this->Input(kX));
    while_grad->SetInput(kOutputs, this->Output(kOutputs));
    while_grad->SetInput(kStepScopes, this->Output(kStepScopes));
F
Update  
fengjiayi 已提交
615 616

    auto *grad_block = this->grad_block_[0];
Y
Yu Yang 已提交
617 618
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
619 620 621

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
622 623 624 625
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
626 627
      }
    }
H
hong 已提交
628 629
    auto igs = this->InputGrad(kX, /*do not drop empty gradient*/ false);

630
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
631
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
M
minqiyang 已提交
632
        VLOG(8) << "Ignore " << each_ig;
633 634 635
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
636
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
637 638 639 640

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
H
hong 已提交
641 642
    block_ins.reserve(this->Input(kX).size() + this->Output(kOutputs).size());
    for (auto &p : this->Input(kX)) {
F
fengjiayi 已提交
643 644
      block_ins.insert(p);
    }
H
hong 已提交
645
    for (auto &o : this->Output(kOutputs)) {
F
fengjiayi 已提交
646 647
      block_ins.insert(o);
    }
Y
Yu Yang 已提交
648
    std::unordered_set<std::string> output_grads;
F
Update  
fengjiayi 已提交
649 650 651 652
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
Y
Yu Yang 已提交
653 654 655

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
656
        if (block_ins.find(input_name) != block_ins.end() ||
Y
Yu Yang 已提交
657 658
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
Y
Yang Yang(Tony) 已提交
659 660
          continue;
        }
C
chengduo 已提交
661

Y
Yu Yang 已提交
662
        output_grads.insert(input_name);
Y
Yang Yang(Tony) 已提交
663
      }
F
Update  
fengjiayi 已提交
664
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
665
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
666 667
      }
    }
Y
Yang Yang(Tony) 已提交
668

Y
Yu Yang 已提交
669 670
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
671 672
    std::copy(
        output_grads.begin(), output_grads.end(), output_grads_list.begin());
Y
Yu Yang 已提交
673
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
674 675

    while_grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
676
    while_grad->SetBlockAttr(kStepBlock, grad_block);
Y
Yang Yang(Tony) 已提交
677 678
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
Y
Yu Yang 已提交
679
    while_grad->SetAttr("original_output_grad", output_grads_list);
Y
Yang Yang(Tony) 已提交
680

S
sneaxiy 已提交
681
    while_grad->SetAttr(kSkipEagerDeletionVars, std::vector<std::string>());
Y
Yang Yang(Tony) 已提交
682 683 684
  }
};

685 686
class WhileGradOpVarTypeInference
    : public framework::StaticGraphVarTypeInference {
Y
Yang Yang(Tony) 已提交
687
 public:
M
minqiyang 已提交
688
  void operator()(framework::InferVarTypeContext *ctx) const override {
689 690
    auto p_names = Input(ctx, kX);
    auto pg_ig_names = Output(ctx, framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
691 692

    for (size_t i = 0; i < p_names.size(); ++i) {
693
      if (HasVar(ctx, pg_ig_names[i])) {
M
minqiyang 已提交
694
        VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i]
695 696 697
                << " type: " << GetType(ctx, p_names[i]);
        SetType(ctx, pg_ig_names[i], GetType(ctx, p_names[i]));
        SetDataType(ctx, pg_ig_names[i], GetDataType(ctx, p_names[i]));
Y
Yang Yang(Tony) 已提交
698 699 700 701 702 703 704 705
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
706 707
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
708 709
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));
C
chengduo 已提交
710
    auto pg_ig_names = ctx->Outputs(kXGRAD);
711 712
    auto in_var_ptrs = ctx->GetInputVarPtrs(kX);
    auto out_var_ptrs = ctx->GetOutputVarPtrs(kXGRAD);
713 714
    PADDLE_ENFORCE_EQ(in_var_ptrs.size(),
                      out_var_ptrs.size(),
715 716 717
                      platform::errors::InvalidArgument(
                          "The size of Inputs(X) must be the same as "
                          "the size of Outputs(X@GRAD)."));
X
Xin Pan 已提交
718 719

    for (size_t i = 0; i < in_var_ptrs.size(); ++i) {
C
chengduo 已提交
720
      if (pg_ig_names[i] == framework::kEmptyVarName) {
Y
Yang Yang(Tony) 已提交
721 722
        continue;
      }
723
      framework::VarDesc *in_var =
R
Ruibiao Chen 已提交
724 725
          PADDLE_GET(framework::VarDesc *, in_var_ptrs[i]);
      PADDLE_GET(framework::VarDesc *, out_var_ptrs[i])
726
          ->SetShape(in_var->GetShape());
Y
Yang Yang(Tony) 已提交
727 728 729 730
    }
  }
};

Y
Yang Yang(Tony) 已提交
731 732 733
}  // namespace operators
}  // namespace paddle

H
hong 已提交
734
REGISTER_OPERATOR(
735 736 737
    while,
    paddle::operators::WhileOp,
    paddle::operators::WhileOpMaker,
H
hong 已提交
738
    paddle::operators::WhileGradOpMaker<paddle::framework::OpDesc>);
739 740
REGISTER_OPERATOR(while_grad,
                  paddle::operators::WhileGradOp,
Y
Yang Yang(Tony) 已提交
741 742
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);