while_op.cc 20.0 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yang Yang(Tony) 已提交
14 15

#include <vector>
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/framework/var_type.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
Y
Yang Yang(Tony) 已提交
22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

S
sneaxiy 已提交
29 30 31 32 33 34 35 36 37 38 39 40
namespace {  // NOLINT
static std::string GetSkipEagerDeletionVarsDebugString(
    const std::vector<std::string> &vars) {
  std::string str = "Skip " + std::to_string(vars.size()) +
                    " var(s) in eager deletion mode: ";
  for (auto &var : vars) {
    str.append(var);
    str.push_back(' ');
  }
  return str;
}
}  // NOLINT
Y
Yang Yang(Tony) 已提交
41 42 43 44 45 46 47 48

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

49 50 51
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
52 53 54
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)),
                            platform::errors::NotFound(
                                "Input(Condition) of WhileOp is not found."));
55

Y
Yang Yang(Tony) 已提交
56
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
57 58 59 60 61 62
    PADDLE_ENFORCE_EQ(
        cond.dims(), paddle::framework::make_ddim({1}),
        platform::errors::InvalidArgument(
            "The shape of Input(Condition) of WhileOp must be 1. But now "
            "the Condition's shape is ",
            cond.dims().to_str(), ".\n"));
Y
Yang Yang(Tony) 已提交
63

D
dzhwinter 已提交
64
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
65
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
66

Y
Yang Yang(Tony) 已提交
67 68 69 70
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();
71 72 73 74 75 76 77 78 79 80 81

    if (step_scopes->size() > 0) {
      platform::DeviceContextPool::Instance().Get(dev_place)->Wait();
      for (auto &s : *step_scopes) {
        if (scope.HasKid(s)) {
          scope.DeleteScope(s);
        }
      }
      step_scopes->clear();
    }

82 83 84
    PADDLE_ENFORCE_EQ(step_scopes->size(), 0,
                      platform::errors::PreconditionNotMet(
                          "The Output(StepScope) of WhileOp should be empty."));
X
Xin Pan 已提交
85

86
    bool cond_data = GetCondData(cond);
C
chengduo 已提交
87
    bool is_test = Attr<bool>("is_test");
S
sneaxiy 已提交
88
    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
89
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
S
fix bug  
sneaxiy 已提交
90

S
sneaxiy 已提交
91
    auto ctx = executor.Prepare(*program, block->ID(), skip_vars);
92
    if (!is_test) {
93
      while (cond_data) {
94 95 96 97
        auto &current_scope = scope.NewScope();
        step_scopes->push_back(&current_scope);
        executor.RunPreparedContext(ctx.get(), &current_scope, false, true,
                                    true);
98 99
        cond_data =
            GetCondData(scope.FindVar(Input(kCondition))->Get<LoDTensor>());
100 101
      }
    } else {
Y
Yang Yang(Tony) 已提交
102
      auto &current_scope = scope.NewScope();
103
      executor.CreateVariables(*program, &current_scope, block->ID());
104
      while (cond_data) {
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        for (auto &name : current_scope.LocalVarNames()) {
          auto *var = current_scope.Var(name);
          if (var->IsType<framework::LoDTensor>()) {
            // Clear all lod information for all lod_tensors.
            auto *t = var->GetMutable<framework::LoDTensor>();
            framework::LoD empty_lod;
            t->set_lod(empty_lod);
          } else if (var->IsType<framework::LoDTensorArray>()) {
            // Clear elements of all tensor arrays.
            auto *t = var->GetMutable<framework::LoDTensorArray>();
            t->clear();
          }
        }
        executor.RunPreparedContext(ctx.get(), &current_scope, false, false,
                                    false);
120 121
        cond_data =
            GetCondData(scope.FindVar(Input(kCondition))->Get<LoDTensor>());
C
chengduo 已提交
122
      }
123
      scope.DeleteScope(&current_scope);
Y
Yang Yang(Tony) 已提交
124 125 126 127 128 129
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
130
  void Make() override {
Y
Yang Yu 已提交
131
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
132 133 134 135 136 137 138
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
139
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
140
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
141
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
142 143 144 145 146
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
147 148
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
149 150 151 152
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
S
sneaxiy 已提交
153
    AddAttr<std::vector<std::string>>(kSkipEagerDeletionVars,
S
fix bug  
sneaxiy 已提交
154 155 156
                                      "Vars that would skip eager deletion."
                                      "Users should not set this manually.")
        .SetDefault(std::vector<std::string>());
Y
Yang Yang(Tony) 已提交
157 158 159 160 161 162 163 164 165 166 167 168
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

169 170 171
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
172 173 174 175
    PADDLE_ENFORCE_EQ(
        Attr<bool>("is_test"), false,
        platform::errors::InvalidArgument(
            "WhileGradOp is only callable when is_test is false."));
176 177 178
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
179
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
180
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
181
    auto *program = block->Program();
S
sneaxiy 已提交
182 183

    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
184
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
S
sneaxiy 已提交
185
    auto ctx = executor.Prepare(*program, block->ID(), skip_vars);
Y
Yang Yang(Tony) 已提交
186 187 188 189

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
190 191 192 193
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

194 195 196 197 198 199 200 201
    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size(),
                      platform::errors::InvalidArgument(
                          "The number of original output gradient names "
                          "does not match the number of backward input "
                          "gradient names. The number of Backward input "
                          "names is %d and the numbers of original output "
                          "gradient names is %d.",
                          outside_og_names.size(), inside_og_names.size()));
Y
Yang Yang(Tony) 已提交
202

Y
Yang Yang(Tony) 已提交
203 204
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
M
minqiyang 已提交
205 206
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
Y
Yang Yang(Tony) 已提交
207 208 209 210 211
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
M
minqiyang 已提交
212 213
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
C
chengduo 已提交
214 215 216 217
        if (scope.FindVar(outside_og_name) == nullptr) {
          continue;
        }

218 219
        auto &og_outside = *scope.FindVar(outside_og_name);
        auto &og_inside = *cur_scope.Var(inside_og_name);
S
sneaxiy 已提交
220
        if (og_outside.IsType<framework::LoDTensor>()) {
Y
Yang Yang(Tony) 已提交
221
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
222
          auto &inside_tensor = *og_inside.GetMutable<framework::LoDTensor>();
Y
Yang Yang(Tony) 已提交
223 224
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
S
sneaxiy 已提交
225
        } else if (og_outside.IsType<framework::LoDTensorArray>()) {
226 227
          auto outside_array =
              og_outside.GetMutable<framework::LoDTensorArray>();
Y
Yang Yang(Tony) 已提交
228
          auto &inside_array =
229
              *og_inside.GetMutable<framework::LoDTensorArray>();
230 231 232
          inside_array.clear();
          inside_array.resize(outside_array->size());
          VLOG(8) << outside_og_name << " size = " << outside_array->size();
Y
Yang Yang(Tony) 已提交
233 234

          for (size_t j = 0; j < inside_array.size(); ++j) {
235 236 237 238 239 240 241
            if (!outside_array->at(j).IsInitialized()) {
              outside_array->at(j).Resize({0});
            }
            VLOG(8) << j << " " << outside_array->at(j).numel();
            if (outside_array->at(j).numel() != 0) {
              inside_array[j].set_lod(outside_array->at(j).lod());
              inside_array[j].ShareDataWith(outside_array->at(j));
Y
Yang Yang(Tony) 已提交
242
            } else {
243 244 245 246 247 248
              PADDLE_ENFORCE_EQ(
                  inside_array[j].numel(), 0,
                  platform::errors::InvalidArgument(
                      "The numel of %d-th element of var %s (LoDTensorArray) "
                      "in while block must be 0, but received its numel is %d.",
                      j, inside_og_name, inside_array[j].numel()));
Y
Yang Yang(Tony) 已提交
249 250
            }
          }
C
chengduo 已提交
251
        } else {
252 253 254
          PADDLE_THROW(platform::errors::Unimplemented(
              "Currently only support LoDTensor and LoDTensorArray in "
              "WhileGradOp."));
Y
Yang Yang(Tony) 已提交
255 256
        }
      }
C
chengduoZH 已提交
257 258
      executor.RunPreparedContext(ctx.get(), *cur_scope_iter, false, true,
                                  true);
Y
Yang Yang(Tony) 已提交
259

C
chengduo 已提交
260 261 262
      // The Outputs(kXGRAD) contains the names of the gradient of parameters
      // and inputs.
      auto &pg_ig_names = Outputs(kXGRAD);
Y
Yang Yu 已提交
263
      auto &p_names = Inputs(kX);
264 265 266 267 268 269 270
      PADDLE_ENFORCE_EQ(pg_ig_names.size(), p_names.size(),
                        platform::errors::PreconditionNotMet(
                            "The number of names in Outputs(X@GRAD) does not "
                            "match the number of names in Inputs(X). The "
                            "number of names in Outputs(X@GRAD) is %d and "
                            "the number of names in Inputs(X) is %d.",
                            pg_ig_names.size(), p_names.size()));
C
chengduo 已提交
271 272
      for (size_t param_id = 0; param_id < pg_ig_names.size(); ++param_id) {
        if (pg_ig_names[param_id] == framework::kEmptyVarName) {
273
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
274 275
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
276

C
chengduo 已提交
277 278 279 280
        // for some grad_op, their input doesn't have gradient,
        // for example lookup_table_grad_op, the input(Idx) doesn't have
        // gradient.
        auto pg_ig_var = cur_scope.FindVar(inside_grad_name);
281 282 283
        PADDLE_ENFORCE_NOT_NULL(
            pg_ig_var, platform::errors::NotFound("Variable %s is not found.",
                                                  inside_grad_name));
C
chengduo 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        if (pg_ig_var->IsType<framework::LoDTensorArray>()) {
          auto pg_ig_lod_t_arr =
              pg_ig_var->GetMutable<framework::LoDTensorArray>();
          bool empty = true;
          for (auto &each : *pg_ig_lod_t_arr) {
            if (each.numel() != 0) {
              empty = false;
              break;
            }
          }
          if (empty) {
            LOG(WARNING) << pg_ig_names[param_id]
                         << " is not found in cur_scope.";
            continue;
          }
        }

Y
Yang Yang(Tony) 已提交
301
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
302 303 304 305 306 307 308 309 310 311 312
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
313 314 315 316
          PADDLE_ENFORCE_NOT_NULL(
              var, platform::errors::NotFound("Variable %s is not found.",
                                              inside_grad_name));
          PADDLE_ENFORCE_EQ(
C
chengduoZH 已提交
317 318
              var->IsType<framework::LoDTensorArray>() ||
                  var->IsType<LoDTensor>(),
319 320 321 322
              true, platform::errors::InvalidArgument(
                        "Currently the type of var only can be LoDTensorArray, "
                        "or LoDTensor, but the received var[%s] is %s.",
                        inside_grad_name, framework::ToTypeName(var->Type())));
C
chengduo 已提交
323

Y
Yang Yang(Tony) 已提交
324 325 326
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
Y
Yu Yang 已提交
327
            attrs["dtype"] = inside_tensor.type();
328
            attrs["shape"] = framework::vectorize<int>(inside_tensor.dims());
Y
Yang Yang(Tony) 已提交
329 330
            attrs["value"] = 0.0f;

C
chengduo 已提交
331
            auto var_name = pg_ig_names[param_id];
Y
Yang Yang(Tony) 已提交
332
            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
333
                "fill_constant", framework::VariableNameMap{},
334
                {{"Out", {var_name}}}, attrs);
D
dzhwinter 已提交
335
            zero_op->Run(scope, dev_place);
336 337 338
            scope.FindVar(var_name)
                ->GetMutable<framework::LoDTensor>()
                ->set_lod(inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
339 340
          }
        }
Y
Yang Yang(Tony) 已提交
341
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yang Yang(Tony) 已提交
342
        auto sum_op = framework::OpRegistry::CreateOp(
C
chengduo 已提交
343 344
            "sum", {{"X", {pg_ig_names[param_id], new_inside_name}}},
            {{"Out", {pg_ig_names[param_id]}}},
345
            framework::AttributeMap{{"use_mkldnn", {false}}});
D
dzhwinter 已提交
346
        sum_op->Run(cur_scope, dev_place);
Y
Yang Yang(Tony) 已提交
347
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yang Yang(Tony) 已提交
348
      }
349 350
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
351
    }
352
    step_scopes->clear();
Y
Yang Yang(Tony) 已提交
353 354 355
  }
};

H
hong 已提交
356 357
template <typename T>
class WhileGradOpMaker : public framework::SingleGradOpMaker<T> {
Y
Yang Yang(Tony) 已提交
358
 public:
H
hong 已提交
359
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yang Yang(Tony) 已提交
360 361

 protected:
362
  void Apply(GradOpPtr<T> while_grad) const override {
F
Update  
fengjiayi 已提交
363
    while_grad->SetType("while_grad");
H
hong 已提交
364 365 366
    while_grad->SetInput(kX, this->Input(kX));
    while_grad->SetInput(kOutputs, this->Output(kOutputs));
    while_grad->SetInput(kStepScopes, this->Output(kStepScopes));
F
Update  
fengjiayi 已提交
367 368

    auto *grad_block = this->grad_block_[0];
Y
Yu Yang 已提交
369 370
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
371 372 373

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
374 375 376 377
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
378 379
      }
    }
H
hong 已提交
380 381
    auto igs = this->InputGrad(kX, /*do not drop empty gradient*/ false);

382
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
383
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
M
minqiyang 已提交
384
        VLOG(8) << "Ignore " << each_ig;
385 386 387
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
388
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
389 390 391 392

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
H
hong 已提交
393 394
    block_ins.reserve(this->Input(kX).size() + this->Output(kOutputs).size());
    for (auto &p : this->Input(kX)) {
F
fengjiayi 已提交
395 396
      block_ins.insert(p);
    }
H
hong 已提交
397
    for (auto &o : this->Output(kOutputs)) {
F
fengjiayi 已提交
398 399
      block_ins.insert(o);
    }
Y
Yu Yang 已提交
400
    std::unordered_set<std::string> output_grads;
F
Update  
fengjiayi 已提交
401 402 403 404
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
Y
Yu Yang 已提交
405 406 407

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
408
        if (block_ins.find(input_name) != block_ins.end() ||
Y
Yu Yang 已提交
409 410
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
Y
Yang Yang(Tony) 已提交
411 412
          continue;
        }
C
chengduo 已提交
413

Y
Yu Yang 已提交
414
        output_grads.insert(input_name);
Y
Yang Yang(Tony) 已提交
415
      }
F
Update  
fengjiayi 已提交
416
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
417
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
418 419
      }
    }
Y
Yang Yang(Tony) 已提交
420

Y
Yu Yang 已提交
421 422 423 424 425
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
    std::copy(output_grads.begin(), output_grads.end(),
              output_grads_list.begin());
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
426 427

    while_grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
428
    while_grad->SetBlockAttr(kStepBlock, grad_block);
Y
Yang Yang(Tony) 已提交
429 430
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
Y
Yu Yang 已提交
431
    while_grad->SetAttr("original_output_grad", output_grads_list);
Y
Yang Yang(Tony) 已提交
432

S
sneaxiy 已提交
433
    while_grad->SetAttr(kSkipEagerDeletionVars, std::vector<std::string>());
Y
Yang Yang(Tony) 已提交
434 435 436
  }
};

437 438
class WhileGradOpVarTypeInference
    : public framework::StaticGraphVarTypeInference {
Y
Yang Yang(Tony) 已提交
439
 public:
M
minqiyang 已提交
440
  void operator()(framework::InferVarTypeContext *ctx) const override {
441 442
    auto p_names = Input(ctx, kX);
    auto pg_ig_names = Output(ctx, framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
443 444

    for (size_t i = 0; i < p_names.size(); ++i) {
445
      if (HasVar(ctx, pg_ig_names[i])) {
M
minqiyang 已提交
446
        VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i]
447 448 449
                << " type: " << GetType(ctx, p_names[i]);
        SetType(ctx, pg_ig_names[i], GetType(ctx, p_names[i]));
        SetDataType(ctx, pg_ig_names[i], GetDataType(ctx, p_names[i]));
Y
Yang Yang(Tony) 已提交
450 451 452 453 454 455 456 457
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
458 459
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
460 461
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));
C
chengduo 已提交
462
    auto pg_ig_names = ctx->Outputs(kXGRAD);
X
Xin Pan 已提交
463 464 465 466
    std::vector<framework::InferShapeVarPtr> in_var_ptrs =
        ctx->GetInputVarPtrs(kX);
    std::vector<framework::InferShapeVarPtr> out_var_ptrs =
        ctx->GetOutputVarPtrs(kXGRAD);
467 468 469 470
    PADDLE_ENFORCE_EQ(in_var_ptrs.size(), out_var_ptrs.size(),
                      platform::errors::InvalidArgument(
                          "The size of Inputs(X) must be the same as "
                          "the size of Outputs(X@GRAD)."));
X
Xin Pan 已提交
471 472

    for (size_t i = 0; i < in_var_ptrs.size(); ++i) {
C
chengduo 已提交
473
      if (pg_ig_names[i] == framework::kEmptyVarName) {
Y
Yang Yang(Tony) 已提交
474 475
        continue;
      }
476
      framework::VarDesc *in_var =
477 478
          BOOST_GET(framework::VarDesc *, in_var_ptrs[i]);
      BOOST_GET(framework::VarDesc *, out_var_ptrs[i])
479
          ->SetShape(in_var->GetShape());
Y
Yang Yang(Tony) 已提交
480 481 482 483
    }
  }
};

Y
Yang Yang(Tony) 已提交
484 485 486
}  // namespace operators
}  // namespace paddle

H
hong 已提交
487 488 489
REGISTER_OPERATOR(
    while, paddle::operators::WhileOp, paddle::operators::WhileOpMaker,
    paddle::operators::WhileGradOpMaker<paddle::framework::OpDesc>);
Y
Yang Yang(Tony) 已提交
490 491 492
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);