rmsprop.py 12.2 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import warnings

W
wanghuancoder 已提交
17 18
from paddle import _C_ops

19
from ..fluid import framework
W
wanghuancoder 已提交
20
from ..fluid.framework import in_dygraph_mode
21
from .optimizer import Optimizer
M
MRXLT 已提交
22

23 24
__all__ = []

M
MRXLT 已提交
25 26

class RMSProp(Optimizer):
27
    r"""
M
MRXLT 已提交
28 29 30 31 32 33 34 35
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

36
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
37

38
        w & = w - \frac{\eta} {\sqrt{r(w,t) + \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
39 40 41 42 43 44 45 46 47

    The first equation calculates moving average of the squared gradient for
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

48
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
49

50 51
        v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) +
            \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
52 53 54 55 56 57 58

        w & = w - v(w, t)

    if centered is True:

    ..  math::

59
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
60

61
        g(w, t) & = \rho g(w, t-1) + (1 - \rho)\nabla Q_{i}(w)
M
MRXLT 已提交
62

63 64
        v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) - (g(w, t))^2 +
            \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
65 66 67

        w & = w - v(w, t)

S
sunzhongkai588 已提交
68 69
    where, :math:`\rho` is a hyperparameter and typical values are 0.9, 0.95
    and so on. :math:`\beta` is the momentum term. :math:`\epsilon` is a
M
MRXLT 已提交
70 71 72 73 74
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Parameters:
75
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
S
sunzhongkai588 已提交
76
          It can be a float value or a LRScheduler.
77 78
        rho(float, optional): rho is :math:`\rho` in equation, default is 0.95.
        epsilon(float, optional): :math:`\epsilon` in equation is smoothing term to
S
sunzhongkai588 已提交
79
          avoid division by zero, default is 1e-6.
80
        momentum(float, optional): :math:`\beta` in equation is the momentum term,
S
sunzhongkai588 已提交
81
          default is 0.0.
82
        centered(bool, optional): If True, gradients are normalized by the estimated variance of
S
sunzhongkai588 已提交
83 84 85
          the gradient; if False, by the uncentered second moment. Setting this to
          True may help with training, but is slightly more expensive in terms of
          computation and memory. Defaults to False.
86 87 88
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
          This parameter is required in dygraph mode. And you can specify different options for
          different parameter groups such as the learning rate, weight decay, etc,
89
          then the parameters are list of dict. Note that the learning_rate in parameter groups
90
          represents the scale of base learning_rate.
91
          The default value is None in static graph mode, at this time all parameters will be updated.
92
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
93
          It can be a float value as coeff of L2 regularization or \
S
sunzhongkai588 已提交
94
          :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
95 96 97
          If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
          the regularization setting here in optimizer will be ignored for this parameter.
          Otherwise, the regularization setting here in optimizer will take effect.
S
sunzhongkai588 已提交
98
          Default None, meaning there is no regularization.
99 100
        grad_clip (GradientClipBase, optional): Gradient clipping strategy, it's an instance of
          some derived class of ``GradientClipBase`` . There are three clipping strategies
S
sunzhongkai588 已提交
101 102
          ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
          :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
103
        name (str, optional): This parameter is used by developers to print debugging information.
S
sunzhongkai588 已提交
104
          For details, please refer to :ref:`api_guide_Name`. Default is None.
M
MRXLT 已提交
105 106

    Examples:
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            .. code-block:: python

                >>> import paddle

                >>> inp = paddle.rand([10,10], dtype="float32")
                >>> linear = paddle.nn.Linear(10, 10)
                >>> out = linear(inp)
                >>> loss = paddle.mean(out)

                >>> rmsprop = paddle.optimizer.RMSProp(learning_rate=0.1,
                ...                     parameters=linear.parameters(),
                ...                             weight_decay=0.01)
                >>> out.backward()
                >>> rmsprop.step()
                >>> rmsprop.clear_grad()

                >>> # Note that the learning_rate of linear_2 is 0.01.
                >>> linear_1 = paddle.nn.Linear(10, 10)
                >>> linear_2 = paddle.nn.Linear(10, 10)
                >>> inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                >>> out = linear_1(inp)
                >>> out = linear_2(out)
                >>> loss = paddle.mean(out)
                >>> rmsprop = paddle.optimizer.RMSProp(
                ...     learning_rate=0.1,
                ...     parameters=[{
                ...         'params': linear_1.parameters()
                ...     }, {
                ...         'params': linear_2.parameters(),
                ...         'weight_decay': 0.001,
                ...         'learning_rate': 0.1
                ...     }],
                ...     weight_decay=0.01
                ... )
                >>> out.backward()
                >>> rmsprop.step()
                >>> rmsprop.clear_grad()
M
MRXLT 已提交
144 145 146 147 148 149
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
    _mean_grad_acc_str = "mean_grad"

150 151 152 153 154 155 156 157 158 159 160 161
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
M
MRXLT 已提交
162 163 164 165 166 167 168 169
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")
M
MRXLT 已提交
170 171 172 173 174 175
        if not 0.0 <= epsilon:
            raise ValueError("Invalid value of epsilon, expect epsilon >= 0.")
        if not 0.0 <= momentum:
            raise ValueError("Invalid value of momentum, expect momentum >= 0.")
        if not 0.0 <= rho:
            raise ValueError("Invalid value of rho, expect rho >= 0.")
M
MRXLT 已提交
176

177
        super().__init__(
178 179 180 181 182 183
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
184 185 186 187 188 189

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
        self._centered = centered
190 191
        self._multi_precision = False
        self._master_weights = {}
192 193 194 195 196 197
        self._default_dict = {
            'rho': rho,
            'epsilon': epsilon,
            'momentum': momentum,
            'centered': centered,
        }
M
MRXLT 已提交
198 199 200 201 202

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

203 204 205
        if isinstance(parameters, dict):
            parameters = parameters.get('params')

M
MRXLT 已提交
206
        for p in parameters:
W
wanghuancoder 已提交
207 208 209
            if p.name in self._already_create_accumulater:
                continue

210
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
211 212 213 214
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._momentum_acc_str, master_p)
                self._add_accumulator(self._mean_square_acc_str, master_p)
                self._add_accumulator(self._mean_grad_acc_str, master_p)
W
wanghuancoder 已提交
215
                self._already_create_accumulater.add(p.name)
216 217
                continue
            if (
218
                self._is_dtype_fp16_or_bf16(p.dtype)
219 220 221 222 223 224
                and not self._multi_precision
            ):
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
M
MRXLT 已提交
225 226 227
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
            self._add_accumulator(self._mean_grad_acc_str, p)
W
wanghuancoder 已提交
228
            self._already_create_accumulater.add(p.name)
M
MRXLT 已提交
229 230 231 232 233

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

234 235 236
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)

237
        momentum_acc = self._get_accumulator_master(
238 239
            self._momentum_acc_str, param_and_grad[0]
        )
240
        mean_square_acc = self._get_accumulator_master(
241 242
            self._mean_square_acc_str, param_and_grad[0]
        )
243
        mean_grad_acc = self._get_accumulator_master(
244 245
            self._mean_grad_acc_str, param_and_grad[0]
        )
246 247
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
248 249 250 251 252 253
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
M
MRXLT 已提交
254

W
wanghuancoder 已提交
255 256 257 258 259 260 261 262
        if in_dygraph_mode():
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
263
                master_weight,
W
wanghuancoder 已提交
264 265 266 267
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
268
                find_master,
W
wanghuancoder 已提交
269 270 271
            )
            return None
        else:
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "MeanGrad": mean_grad_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }

            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight
W
wanghuancoder 已提交
291 292
            rmsprop_op = block.append_op(
                type=self.type,
293 294
                inputs=inputs,
                outputs=outputs,
W
wanghuancoder 已提交
295 296 297 298 299 300 301 302 303 304
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
                    "centered": self._centered,
                },
                stop_gradient=True,
            )

            return rmsprop_op
305 306 307 308

    def _update_param_group(self, parameters):
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self._rho = parameters.get('rho', self._default_dict['rho'])
309 310 311 312 313 314
        self._momentum = parameters.get(
            'momentum', self._default_dict['momentum']
        )
        self._centered = parameters.get(
            'centered', self._default_dict['centered']
        )
315 316
        parameters = parameters.get('params')
        return parameters