rmsprop.py 9.8 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import framework

18 19
__all__ = []

M
MRXLT 已提交
20 21

class RMSProp(Optimizer):
22
    r"""
M
MRXLT 已提交
23 24 25 26 27 28 29 30
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

31
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
32

33
        w & = w - \frac{\eta} {\sqrt{r(w,t) + \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
34 35 36 37 38 39 40 41 42

    The first equation calculates moving average of the squared gradient for
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

43
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
44

45 46
        v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) +
            \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
47 48 49 50 51 52 53

        w & = w - v(w, t)

    if centered is True:

    ..  math::

54
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
55

56
        g(w, t) & = \rho g(w, t-1) + (1 - \rho)\nabla Q_{i}(w)
M
MRXLT 已提交
57

58 59
        v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) - (g(w, t))^2 +
            \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
60 61 62

        w & = w - v(w, t)

S
sunzhongkai588 已提交
63 64
    where, :math:`\rho` is a hyperparameter and typical values are 0.9, 0.95
    and so on. :math:`\beta` is the momentum term. :math:`\epsilon` is a
M
MRXLT 已提交
65 66 67 68 69
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Parameters:
70
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
S
sunzhongkai588 已提交
71
          It can be a float value or a LRScheduler.
72 73
        rho(float, optional): rho is :math:`\rho` in equation, default is 0.95.
        epsilon(float, optional): :math:`\epsilon` in equation is smoothing term to
S
sunzhongkai588 已提交
74
          avoid division by zero, default is 1e-6.
75
        momentum(float, optional): :math:`\beta` in equation is the momentum term,
S
sunzhongkai588 已提交
76
          default is 0.0.
77
        centered(bool, optional): If True, gradients are normalized by the estimated variance of
S
sunzhongkai588 已提交
78 79 80
          the gradient; if False, by the uncentered second moment. Setting this to
          True may help with training, but is slightly more expensive in terms of
          computation and memory. Defaults to False.
81 82 83 84 85
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
          This parameter is required in dygraph mode. And you can specify different options for
          different parameter groups such as the learning rate, weight decay, etc,
          then the parameters are list of dict. Note that the learning_rate in paramter groups
          represents the scale of base learning_rate.
S
sunzhongkai588 已提交
86
          The default value is None in static mode, at this time all parameters will be updated.
87
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
S
sunzhongkai588 已提交
88 89
          It canbe a float value as coeff of L2 regularization or \
          :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
90 91 92
          If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
          the regularization setting here in optimizer will be ignored for this parameter.
          Otherwise, the regularization setting here in optimizer will take effect.
S
sunzhongkai588 已提交
93
          Default None, meaning there is no regularization.
94
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
S
sunzhongkai588 已提交
95 96 97
          some derived class of ``GradientClipBase`` . There are three cliping strategies
          ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
          :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
98
        name (str, optional): This parameter is used by developers to print debugging information.
S
sunzhongkai588 已提交
99
          For details, please refer to :ref:`api_guide_Name`. Default is None.
M
MRXLT 已提交
100 101 102 103 104 105

    Examples:
          .. code-block:: python

            import paddle

106
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
107 108 109 110
            linear = paddle.nn.Linear(10, 10)
            out = linear(inp)
            loss = paddle.mean(out)

111 112 113
            rmsprop = paddle.optimizer.RMSProp(learning_rate=0.1,
                             parameters=linear.parameters(),
                                       weight_decay=0.01)
M
MRXLT 已提交
114
            out.backward()
115 116
            rmsprop.step()
            rmsprop.clear_grad()
M
MRXLT 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            rmsprop = paddle.optimizer.RMSProp(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
134
                weight_decay=0.01)
135 136 137
            out.backward()
            rmsprop.step()
            rmsprop.clear_grad()
M
MRXLT 已提交
138 139 140 141 142 143
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
    _mean_grad_acc_str = "mean_grad"

144 145 146 147 148 149 150 151 152 153 154 155
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
M
MRXLT 已提交
156 157 158 159 160 161 162 163
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")
M
MRXLT 已提交
164 165 166 167 168 169
        if not 0.0 <= epsilon:
            raise ValueError("Invalid value of epsilon, expect epsilon >= 0.")
        if not 0.0 <= momentum:
            raise ValueError("Invalid value of momentum, expect momentum >= 0.")
        if not 0.0 <= rho:
            raise ValueError("Invalid value of rho, expect rho >= 0.")
M
MRXLT 已提交
170

171 172 173 174 175 176 177
        super(RMSProp, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
178 179 180 181 182 183

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
        self._centered = centered
184 185 186 187 188 189
        self._default_dict = {
            'rho': rho,
            'epsilon': epsilon,
            'momentum': momentum,
            'centered': centered,
        }
M
MRXLT 已提交
190 191 192 193 194

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

195 196 197
        if isinstance(parameters, dict):
            parameters = parameters.get('params')

M
MRXLT 已提交
198 199 200 201 202 203 204 205 206
        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
            self._add_accumulator(self._mean_grad_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

207 208 209
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "MeanGrad": mean_grad_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc,
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
                "momentum": self._momentum,
                "centered": self._centered,
            },
            stop_gradient=True,
        )
M
MRXLT 已提交
243 244

        return rmsprop_op
245 246 247 248

    def _update_param_group(self, parameters):
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self._rho = parameters.get('rho', self._default_dict['rho'])
249 250 251 252 253 254
        self._momentum = parameters.get(
            'momentum', self._default_dict['momentum']
        )
        self._centered = parameters.get(
            'centered', self._default_dict['centered']
        )
255 256
        parameters = parameters.get('params')
        return parameters