rmsprop.py 13.7 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import warnings

import paddle
W
wanghuancoder 已提交
18 19
from paddle import _C_ops

20
from ..fluid import core, framework, unique_name
W
wanghuancoder 已提交
21
from ..fluid.framework import in_dygraph_mode
22
from ..fluid.layer_helper import LayerHelper
23
from .optimizer import Optimizer
M
MRXLT 已提交
24

25 26
__all__ = []

M
MRXLT 已提交
27 28

class RMSProp(Optimizer):
29
    r"""
M
MRXLT 已提交
30 31 32 33 34 35 36 37
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

38
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
39

40
        w & = w - \frac{\eta} {\sqrt{r(w,t) + \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
41 42 43 44 45 46 47 48 49

    The first equation calculates moving average of the squared gradient for
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

50
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
51

52 53
        v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) +
            \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
54 55 56 57 58 59 60

        w & = w - v(w, t)

    if centered is True:

    ..  math::

61
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
62

63
        g(w, t) & = \rho g(w, t-1) + (1 - \rho)\nabla Q_{i}(w)
M
MRXLT 已提交
64

65 66
        v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) - (g(w, t))^2 +
            \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
67 68 69

        w & = w - v(w, t)

S
sunzhongkai588 已提交
70 71
    where, :math:`\rho` is a hyperparameter and typical values are 0.9, 0.95
    and so on. :math:`\beta` is the momentum term. :math:`\epsilon` is a
M
MRXLT 已提交
72 73 74 75 76
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Parameters:
77
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
S
sunzhongkai588 已提交
78
          It can be a float value or a LRScheduler.
79 80
        rho(float, optional): rho is :math:`\rho` in equation, default is 0.95.
        epsilon(float, optional): :math:`\epsilon` in equation is smoothing term to
S
sunzhongkai588 已提交
81
          avoid division by zero, default is 1e-6.
82
        momentum(float, optional): :math:`\beta` in equation is the momentum term,
S
sunzhongkai588 已提交
83
          default is 0.0.
84
        centered(bool, optional): If True, gradients are normalized by the estimated variance of
S
sunzhongkai588 已提交
85 86 87
          the gradient; if False, by the uncentered second moment. Setting this to
          True may help with training, but is slightly more expensive in terms of
          computation and memory. Defaults to False.
88 89 90 91 92
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
          This parameter is required in dygraph mode. And you can specify different options for
          different parameter groups such as the learning rate, weight decay, etc,
          then the parameters are list of dict. Note that the learning_rate in paramter groups
          represents the scale of base learning_rate.
93
          The default value is None in static graph mode, at this time all parameters will be updated.
94
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
S
sunzhongkai588 已提交
95 96
          It canbe a float value as coeff of L2 regularization or \
          :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
97 98 99
          If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
          the regularization setting here in optimizer will be ignored for this parameter.
          Otherwise, the regularization setting here in optimizer will take effect.
S
sunzhongkai588 已提交
100
          Default None, meaning there is no regularization.
101
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
S
sunzhongkai588 已提交
102 103 104
          some derived class of ``GradientClipBase`` . There are three cliping strategies
          ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
          :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
105
        name (str, optional): This parameter is used by developers to print debugging information.
S
sunzhongkai588 已提交
106
          For details, please refer to :ref:`api_guide_Name`. Default is None.
M
MRXLT 已提交
107 108 109 110 111 112

    Examples:
          .. code-block:: python

            import paddle

113
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
114 115 116 117
            linear = paddle.nn.Linear(10, 10)
            out = linear(inp)
            loss = paddle.mean(out)

118 119 120
            rmsprop = paddle.optimizer.RMSProp(learning_rate=0.1,
                             parameters=linear.parameters(),
                                       weight_decay=0.01)
M
MRXLT 已提交
121
            out.backward()
122 123
            rmsprop.step()
            rmsprop.clear_grad()
M
MRXLT 已提交
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            rmsprop = paddle.optimizer.RMSProp(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
141
                weight_decay=0.01)
142 143 144
            out.backward()
            rmsprop.step()
            rmsprop.clear_grad()
M
MRXLT 已提交
145 146 147 148 149 150
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
    _mean_grad_acc_str = "mean_grad"

151 152 153 154 155 156 157 158 159 160 161 162
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
M
MRXLT 已提交
163 164 165 166 167 168 169 170
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")
M
MRXLT 已提交
171 172 173 174 175 176
        if not 0.0 <= epsilon:
            raise ValueError("Invalid value of epsilon, expect epsilon >= 0.")
        if not 0.0 <= momentum:
            raise ValueError("Invalid value of momentum, expect momentum >= 0.")
        if not 0.0 <= rho:
            raise ValueError("Invalid value of rho, expect rho >= 0.")
M
MRXLT 已提交
177

178
        super().__init__(
179 180 181 182 183 184
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
185 186 187 188 189 190

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
        self._centered = centered
191 192
        self._multi_precision = False
        self._master_weights = {}
193 194 195 196 197 198
        self._default_dict = {
            'rho': rho,
            'epsilon': epsilon,
            'momentum': momentum,
            'centered': centered,
        }
M
MRXLT 已提交
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

M
MRXLT 已提交
256 257 258 259
    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

260 261 262
        if isinstance(parameters, dict):
            parameters = parameters.get('params')

M
MRXLT 已提交
263
        for p in parameters:
264 265 266 267 268 269 270 271 272 273 274 275 276 277
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._momentum_acc_str, master_p)
                self._add_accumulator(self._mean_square_acc_str, master_p)
                self._add_accumulator(self._mean_grad_acc_str, master_p)
                continue
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
M
MRXLT 已提交
278 279 280 281 282 283 284 285
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
            self._add_accumulator(self._mean_grad_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

286 287 288
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)

289 290 291 292 293 294 295 296 297
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
298 299 300 301 302 303 304 305 306
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
M
MRXLT 已提交
307

W
wanghuancoder 已提交
308 309 310 311 312 313 314 315
        if in_dygraph_mode():
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
316
                master_weight,
W
wanghuancoder 已提交
317 318 319 320
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
321
                find_master,
W
wanghuancoder 已提交
322 323 324
            )
            return None
        else:
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "MeanGrad": mean_grad_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }

            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight
W
wanghuancoder 已提交
344 345
            rmsprop_op = block.append_op(
                type=self.type,
346 347
                inputs=inputs,
                outputs=outputs,
W
wanghuancoder 已提交
348 349 350 351 352 353 354 355 356 357
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
                    "centered": self._centered,
                },
                stop_gradient=True,
            )

            return rmsprop_op
358 359 360 361

    def _update_param_group(self, parameters):
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self._rho = parameters.get('rho', self._default_dict['rho'])
362 363 364 365 366 367
        self._momentum = parameters.get(
            'momentum', self._default_dict['momentum']
        )
        self._centered = parameters.get(
            'centered', self._default_dict['centered']
        )
368 369
        parameters = parameters.get('params')
        return parameters