fusion_lstm_op.cc 24.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
23 24 25 26
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
27 28
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of LSTM.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
29
                 "Assert only one Input(WeightX) of LSTM.");
30
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
31
                 "Assert only one Input(WeightH) of LSTM.");
32 33 34
  PADDLE_ENFORCE(ctx->HasInput("Bias"), "Assert only one Input(Bias) of LSTM.");
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of LSTM.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
35
                 "Assert only one Output(Hidden) of LSTM.");
36 37
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Assert only one Output(Cell) of LSTM.");
T
tensor-tang 已提交
38

T
tensor-tang 已提交
39 40
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
41

42 43
  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
T
tensor-tang 已提交
44 45 46 47 48 49 50 51 52
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
67 68
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
69 70
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
71 72 73 74 75 76 77
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");
T
tensor-tang 已提交
78 79 80 81 82 83
  PADDLE_ENFORCE_EQ(
      b_dims[1], (ctx->Attrs().Get<bool>("use_peepholes") ? 7 : 4) * frame_size,
      "The second dimension of Input(Bias) should be "
      "7 * %d if enable peepholes connection or"
      "4 * %d if disable peepholes",
      frame_size, frame_size);
T
tensor-tang 已提交
84

T
tensor-tang 已提交
85
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
86 87
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
88 89
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
90
  int xx_width;
T
tensor-tang 已提交
91
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
92 93 94
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
95
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
96
                   "Assert only one Output(BatchedInput) of LSTM.");
97
    PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
T
tensor-tang 已提交
98
                   "Assert only one Output(BatchedHidden) of LSTM.");
99
    PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
T
tensor-tang 已提交
100
                   "Assert only one Output(BatchedCell) of LSTM.");
101
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
102
                   "Assert only one Output(ReorderedH0) of LSTM");
103
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
T
tensor-tang 已提交
104
                   "Assert only one Output(ReorderedC0) of LSTM.");
T
tensor-tang 已提交
105 106 107
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
108
  }
T
tensor-tang 已提交
109 110
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
111 112 113 114 115
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
116
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
117 118 119 120
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
121
  AddInput("X",
T
tensor-tang 已提交
122
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
123
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
124 125 126 127 128 129 130 131 132
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
133 134 135
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
136 137
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
138 139 140 141 142 143 144 145
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
146 147 148 149 150 151 152 153 154 155 156 157
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
158
  AddOutput("Hidden",
T
tensor-tang 已提交
159
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
160 161
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
162
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
163
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
164
  AddOutput("XX",
T
tensor-tang 已提交
165 166 167
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
168 169
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
170 171 172 173 174
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
175 176 177 178 179 180 181 182
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
183 184 185 186
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
205 206
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
207 208 209
)DOC");
}

T
tensor-tang 已提交
210
template <typename T>
T
tensor-tang 已提交
211
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
212
 public:
T
tensor-tang 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

T
tensor-tang 已提交
230 231 232 233 234 235 236 237 238 239 240 241
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");     \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");
T
tensor-tang 已提交
242 243 244 245 246 247 248 249 250 251

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
#define INIT_BASE_INPUT_DATAS                                        \
  const T* x_data = x->data<T>();                                    \
  const T* wx_data = wx->data<T>();                                  \
  const T* wh_data = wh->data<T>();                                  \
  /* diagonal weight*/                                               \
  const T* wc_data = bias->data<T>() + D4;                           \
  /* for peephole only*/                                             \
  Tensor checked_cell;                                               \
  T* checked_cell_data = nullptr;                                    \
  auto place = ctx.GetPlace();                                       \
  if (use_peepholes) {                                               \
    /* w_ic * Ct-1, w_fc * Ct-1  ; w_oc * Ct => ih*/                 \
    checked_cell_data = checked_cell.mutable_data<T>({2, D}, place); \
  }

/// Compute LSTM
#define GEMM_WH_ADDON(bs, prev, out)                                           \
  blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
            wh_data, D4, static_cast<T>(1), out, D4)

// gates: W_ch, W_ih, W_fh, W_oh
#define GET_Ct(ct_1, gates, ct)                   \
  /* C_t = C_t-1 * fgated + cand_gated * igated*/ \
  act_cand(D, gates, gates);                      \
  blas.VMUL(D, gates, gates + D, gates + D);      \
  blas.VMUL(D, ct_1, gates + D2, gates + D2);     \
  blas.VADD(D, gates + D, gates + D2, ct)

#define GET_Ht(ct, gates, ht)        \
  /* H_t = act_cell(C_t) * ogated */ \
  act_cell(D, ct, gates + D2);       \
  blas.VMUL(D, gates + D2, gates + D3, ht)

T
tensor-tang 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
#define GET_Ct_NOH0C0(gates, ct)     \
  /* C_t = igated * cgated*/         \
  act_gate(D, gates + D, gates + D); \
  act_cand(D, gates, gates);         \
  blas.VMUL(D, gates, gates + D, ct)

#define COMPUTE_CtHt_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                \
  act_gate(D, gates + D3, gates + D3);     \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                         \
  /* get outgated, put W_oc * C_t on igated */      \
  blas.VMUL(D, wc_data + D2, ct, gates + D);        \
  blas.VADD(D, gates + D, gates + D3, gates + D3);  \
  act_gate(D, gates + D3, gates + D3);              \
T
tensor-tang 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt(gates, ct_1, ct, ht) \
  act_gate(D3, gates + D, gates + D);     \
  GET_Ct(ct_1, gates, ct);                \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE(gates, ct_1, ct, ht)        \
  /* get fgated and igated*/                              \
  blas.VMUL(D, wc_data, ct_1, checked_cell_data);         \
  blas.VMUL(D, wc_data + D, ct_1, checked_cell_data + D); \
  blas.VADD(D2, checked_cell_data, gates + D, gates + D); \
  act_gate(D2, gates + D, gates + D);                     \
  GET_Ct(ct_1, gates, ct);                                \
  /* get ogated*/                                         \
  blas.VMUL(D, wc_data + D2, ct, gates + D);              \
  blas.VADD(D, gates + D, gates + D3, gates + D3);        \
  act_gate(D, gates + D3, gates + D3);                    \
  GET_Ht(ct, gates, ht)

T
tensor-tang 已提交
322 323
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
324 325 326
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
327
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
328

T
tensor-tang 已提交
329
    auto x_lod = x->lod();
T
tensor-tang 已提交
330
    const int total_T = x_dims[0];
T
tensor-tang 已提交
331
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
332 333
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
334
    T* xx_data = xx->mutable_data<T>(place);
T
tensor-tang 已提交
335 336
    T* h_out_data = hidden_out->mutable_data<T>(place);
    T* c_out_data = cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
337 338 339
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
                                      xx_data, bias->data<T>());
B
Brian Liu 已提交
340

T
tensor-tang 已提交
341 342 343 344 345
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
T
tensor-tang 已提交
346 347
      h_out_data = h_out_data + offset;
      c_out_data = c_out_data + offset;
T
tensor-tang 已提交
348 349 350 351
      xx_offset = -D4;
      gate_offset = -D;
    }

T
tensor-tang 已提交
352 353 354 355 356 357 358
#define MOVE_ONE_STEP                    \
  prev_h_data = h_out_data;              \
  prev_c_data = c_out_data;              \
  xx_data = xx_data + xx_offset;         \
  h_out_data = h_out_data + gate_offset; \
  c_out_data = c_out_data + gate_offset

T
tensor-tang 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#define PROCESS_H0C0_DEFINES                       \
  int bid = is_reverse ? N - 1 - i : i;            \
  int seq_len = x_lod[0][bid + 1] - x_lod[0][bid]; \
  const T* prev_c_data = nullptr;                  \
  const T* prev_h_data = nullptr;                  \
  int tstart = 0

#define PROCESS_H0C0_PEEPHOLE                                      \
  PROCESS_H0C0_DEFINES;                                            \
  if (h0_data) {                                                   \
    prev_h_data = h0_data + bid * D;                               \
    prev_c_data = c0_data + bid * D;                               \
  } else {                                                         \
    COMPUTE_CtHt_PEEPHOLE_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                                 \
    tstart = 1;                                                    \
  }

#define PROCESS_H0C0                                      \
  PROCESS_H0C0_DEFINES;                                   \
  if (h0_data) {                                          \
    prev_h_data = h0_data + bid * D;                      \
    prev_c_data = c0_data + bid * D;                      \
  } else {                                                \
    COMPUTE_CtHt_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                        \
    tstart = 1;                                           \
T
tensor-tang 已提交
386
  }
B
Brian Liu 已提交
387

T
tensor-tang 已提交
388 389
    if (use_peepholes) {
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
390
        PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
391
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
392 393 394 395 396 397 398
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
          COMPUTE_CtHt_PEEPHOLE(xx_data, prev_c_data, c_out_data, h_out_data);
          MOVE_ONE_STEP;
        }
      }
    } else {
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
399
        PROCESS_H0C0
T
tensor-tang 已提交
400
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
401 402 403 404
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
          COMPUTE_CtHt(xx_data, prev_c_data, c_out_data, h_out_data);
          MOVE_ONE_STEP;
        }
T
tensor-tang 已提交
405
      }
T
tensor-tang 已提交
406
    }
T
tensor-tang 已提交
407 408
#undef PROCESS_H0C0_DEFINES
#undef PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
409 410
#undef PROCESS_H0C0
#undef MOVE_ONE_STEP
T
tensor-tang 已提交
411 412 413 414
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
415
    INIT_BASE_INPUT_OUTPUT
T
tensor-tang 已提交
416
    if (x->lod()[0].size() == 2) {
T
tensor-tang 已提交
417
      SeqCompute(ctx);
T
tensor-tang 已提交
418
      return;
T
tensor-tang 已提交
419 420 421
    }
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
422
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
423

T
tensor-tang 已提交
424 425 426 427 428 429 430 431 432 433 434
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
435

T
tensor-tang 已提交
436
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
437 438
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
439 440 441 442
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
443 444
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
445 446 447
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
448
                                        bias->data<T>());
T
tensor-tang 已提交
449 450
    }

T
tensor-tang 已提交
451 452 453 454 455 456 457
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
458 459
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
460 461 462 463 464 465
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
T
tensor-tang 已提交
466 467
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
T
tensor-tang 已提交
468 469 470 471 472 473 474 475
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
T
tensor-tang 已提交
476 477 478 479 480
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      for (int i = 0; i < max_bs; ++i) {
T
tensor-tang 已提交
481 482 483 484 485 486 487
        GET_Ct_NOH0C0(cur_in_data, cur_c_out_data);
        if (use_peepholes) {
          blas.VMUL(D, wc_data + D2, cur_c_out_data, cur_in_data + D);
          blas.VADD(D, cur_in_data + D, cur_in_data + D3, cur_in_data + D3);
        }
        act_gate(D, cur_in_data + D3, cur_in_data + D3);
        GET_Ht(cur_c_out_data, cur_in_data, cur_h_out_data);
T
tensor-tang 已提交
488 489 490 491 492
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
T
tensor-tang 已提交
493 494
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
495
    }
T
tensor-tang 已提交
496 497
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;

#define DEFINE_CUR                        \
  T* cur_in_data = batched_input_data;    \
  T* cur_prev_c_data = prev_c_data;       \
  T* cur_c_out_data = batched_c_out_data; \
  T* cur_h_out_data = batched_h_out_data

#define MOVE_ONE_BATCH  \
  cur_in_data += D4;    \
  cur_prev_c_data += D; \
  cur_c_out_data += D;  \
  cur_h_out_data += D

#define MOVE_ONE_STEP                  \
  prev_c_data = batched_c_out_data;    \
  prev_h_data = batched_h_out_data;    \
  batched_c_out_data = cur_c_out_data; \
  batched_h_out_data = cur_h_out_data; \
  batched_input_data = cur_in_data
B
Brian Liu 已提交
521

T
tensor-tang 已提交
522 523 524 525 526 527 528 529 530
    if (use_peepholes) {
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
          COMPUTE_CtHt_PEEPHOLE(cur_in_data, cur_prev_c_data, cur_c_out_data,
                                cur_h_out_data);
          MOVE_ONE_BATCH;
B
Brian Liu 已提交
531
        }
T
tensor-tang 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544
        MOVE_ONE_STEP;
      }
    } else {
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
          COMPUTE_CtHt(cur_in_data, cur_prev_c_data, cur_c_out_data,
                       cur_h_out_data);
          MOVE_ONE_BATCH;
        }
        MOVE_ONE_STEP;
T
tensor-tang 已提交
545 546
      }
    }
T
tensor-tang 已提交
547 548 549
#undef MOVE_ONE_STEP
#undef MOVE_ONE_BATCH
#undef DEFINE_CUR
T
tensor-tang 已提交
550 551

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
552 553 554 555
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
556
  }
T
tensor-tang 已提交
557

T
tensor-tang 已提交
558
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
559
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
560 561 562 563 564
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
565 566 567

#undef COMPUTE_CtHt_PEEPHOLE
#undef COMPUTE_CtHt
T
tensor-tang 已提交
568 569 570
#undef GET_Ct_NOH0C0
#undef COMPUTE_CtHt_NOH0C0
#undef COMPUTE_CtHt_PEEPHOLE_NOH0C0
T
tensor-tang 已提交
571 572 573 574
#undef GET_Ht
#undef GET_Ct
#undef GEMM_WH_ADDON
#undef INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
575 576 577
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
578 579 580 581 582 583
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
584
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
585 586
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
587 588
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);