fusion_lstm_op.cc 15.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17 18 19 20 21
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
DECLARE_int32(paddle_num_threads);
T
tensor-tang 已提交
22 23 24 25 26

namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
32 33 34
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
35 36
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
37 38 39 40
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");
T
tensor-tang 已提交
41 42
  PADDLE_ENFORCE(ctx->HasOutput("BatchedGate"),
                 "Output(BatchedGate) of LSTM should not be null.");
T
tensor-tang 已提交
43
  PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
T
tensor-tang 已提交
44
                 "Output(BatchedGate) of LSTM should not be null.");
T
tensor-tang 已提交
45

T
tensor-tang 已提交
46 47
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
48 49 50 51 52 53 54 55 56 57 58 59

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
74 75
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
76 77
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
78 79 80 81 82 83 84 85
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

T
tensor-tang 已提交
86 87 88 89 90 91
  PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
                 "Do not support peephole yet.");
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                    "The second dimension of Input(Bias) should be "
                    "4 * %d if disable peepholes connection",
                    frame_size);
T
tensor-tang 已提交
92

T
tensor-tang 已提交
93
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
94 95
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
96
  ctx->SetOutputDim("BatchedGate", {x_dims[0], wx_dims[1]});
T
tensor-tang 已提交
97
  ctx->SetOutputDim("BatchCellPreAct", out_dims);
T
tensor-tang 已提交
98 99 100 101 102 103
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");

  int xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
104 105 106 107 108
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
109
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
110 111 112 113
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
114
  AddInput("X",
T
tensor-tang 已提交
115
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
116
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
117 118 119 120 121 122 123 124 125
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
126 127 128
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
129 130
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
131 132 133 134 135 136 137 138
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
139 140 141 142 143 144 145 146 147 148 149 150
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
151
  AddOutput("Hidden",
T
tensor-tang 已提交
152
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
153 154
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
155
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
156
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
157
  AddOutput("XX",
T
tensor-tang 已提交
158 159 160
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
161 162
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
163 164
  AddOutput("BatchedGate", "(LoDTensor) (same as LSTMOp).").AsIntermediate();
  AddOutput("BatchCellPreAct", "(LoDTensor) (same as LSTMOp).")
T
tensor-tang 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
      .AsIntermediate();
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
192 193
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
194 195 196 197 198 199 200 201 202 203
)DOC");
}

template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
T
tensor-tang 已提交
204
  // TODO(TJ): check mem copy perf
T
tensor-tang 已提交
205 206 207
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
}

T
tensor-tang 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// TODO(TJ): can move to math::details
template <typename DeviceContext, typename T>
inline void SimpleFC(const math::BlasT<DeviceContext, T>& blas, const int M,
                     const int N, const int K, const T* A, const T* B, T* C,
                     const T* bias_data = NULL) {
  blas.GEMM(CblasNoTrans, CblasNoTrans, M, N, K, static_cast<T>(1), A, B,
            static_cast<T>(0), C);
  if (bias_data) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for if (FLAGS_paddle_num_threads > 1)
#endif
    for (int i = 0; i < M; i++) {
      blas.AXPY(N, static_cast<T>(1), bias_data, C + i * N);
    }
  }
}

T
tensor-tang 已提交
225
template <typename DeviceContext, typename T>
T
tensor-tang 已提交
226
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
227 228
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
229
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
230 231
    auto* wx = ctx.Input<Tensor>("WeightX");
    auto* wh = ctx.Input<Tensor>("WeightH");
T
tensor-tang 已提交
232 233 234 235
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

T
tensor-tang 已提交
236 237
    auto* xx = ctx.Output<LoDTensor>("XX");
    auto* batched_gate = ctx.Output<LoDTensor>("BatchedGate");
T
tensor-tang 已提交
238 239
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
T
tensor-tang 已提交
240 241 242 243 244
    bool is_reverse = ctx.Attr<bool>("is_reverse");

    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_gate_data = batched_gate->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
245 246
    cell_out->mutable_data<T>(ctx.GetPlace());

T
tensor-tang 已提交
247 248 249 250 251
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    auto x_dims = x->dims();
    auto wx_dims = wx->dims();

T
tensor-tang 已提交
252
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
253 254 255 256 257 258 259 260 261 262 263
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    if (x_dims[1] > wx_dims[1]) {
      SimpleFC<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1], x_data,
                                 wx_data, xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_gate, true, is_reverse);
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
      SimpleFC<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
                                 xx_data, wx_data, batched_gate_data,
                                 bias->data<T>());
T
tensor-tang 已提交
264 265
    }

T
tensor-tang 已提交
266 267
    int frame_size = static_cast<int>(wx_dims[1] / 4);
    framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
268
    math::LstmMetaValue<T> lstm_value;
T
tensor-tang 已提交
269 270 271 272
    // no peephole
    lstm_value.check_ig = nullptr;
    lstm_value.check_fg = nullptr;
    lstm_value.check_og = nullptr;
T
tensor-tang 已提交
273 274 275
    lstm_value.prev_state_value = nullptr;
    Tensor ordered_c0;

T
tensor-tang 已提交
276
    framework::Vector<size_t> order(batched_gate->lod()[2]);
T
tensor-tang 已提交
277 278 279 280 281

    if (cell_t0) {
      // Since the batch computing for LSTM reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
T
tensor-tang 已提交
282 283
      ReorderInitState<DeviceContext, T>(dev_ctx, *cell_t0, order, &ordered_c0,
                                         true);
T
tensor-tang 已提交
284 285 286 287 288 289
      lstm_value.prev_state_value = ordered_c0.data<T>();
    }

    // Use the local variable as here.
    LoDTensor batch_hidden, batch_cell;
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
T
tensor-tang 已提交
290 291 292
    batch_hidden.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell_pre_act->mutable_data<T>(out_dims, ctx.GetPlace());
T
tensor-tang 已提交
293

T
tensor-tang 已提交
294 295
    auto batch_starts = batched_gate->lod()[0];
    size_t max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
296 297 298 299 300 301 302
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));

T
tensor-tang 已提交
303
    for (size_t n = 0; n < max_seq_len; n++) {
T
tensor-tang 已提交
304 305 306
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

T
tensor-tang 已提交
307
      Tensor gate_t = batched_gate->Slice(bstart, bend);
T
tensor-tang 已提交
308 309 310 311 312 313 314 315 316 317
      Tensor out_t = batch_hidden.Slice(bstart, bend);
      Tensor cell_t = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end);
T
tensor-tang 已提交
318 319
        // TODO(TJ): use gemm directly
        blas.MatMul(pre_hidden_t, false, *wh, false, static_cast<T>(1.0),
T
tensor-tang 已提交
320 321
                    &gate_t, static_cast<T>(1.0));
      } else if (hidden_t0) {
T
tensor-tang 已提交
322
        // TODO(TJ): move h0 outside for
T
tensor-tang 已提交
323 324 325 326 327 328 329 330
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTM reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
        Tensor ordered_h0;
T
tensor-tang 已提交
331
        ReorderInitState<DeviceContext, T>(dev_ctx, *hidden_t0, order,
T
tensor-tang 已提交
332
                                           &ordered_h0, true);
T
tensor-tang 已提交
333 334 335
        // TODO(TJ): use gemm directly
        blas.MatMul(ordered_h0, false, *wh, false, static_cast<T>(1.0), &gate_t,
                    static_cast<T>(1.0));
T
tensor-tang 已提交
336 337 338 339 340 341 342
      }

      lstm_value.gate_value = gate_t.data<T>();
      lstm_value.output_value = out_t.data<T>();
      lstm_value.state_value = cell_t.data<T>();
      lstm_value.state_active_value = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<DeviceContext, T>::compute(
T
tensor-tang 已提交
343 344
          dev_ctx, lstm_value, frame_size, cur_batch_size, gate_act, cell_act,
          cand_act);
T
tensor-tang 已提交
345 346 347 348
      lstm_value.prev_state_value = lstm_value.state_value;
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
349
    batch_hidden.set_lod(batched_gate->lod());
T
tensor-tang 已提交
350
    // restore the output hidden in LoDTensor from the batch hidden
T
tensor-tang 已提交
351
    to_seq(dev_ctx, batch_hidden, hidden_out);
T
tensor-tang 已提交
352

T
tensor-tang 已提交
353
    batch_cell.set_lod(batched_gate->lod());
T
tensor-tang 已提交
354
    // restore the output cell state in LoDTensor from the batch cell
T
tensor-tang 已提交
355
    to_seq(dev_ctx, batch_cell, cell_out);
T
tensor-tang 已提交
356 357 358 359 360 361 362
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
363
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
364 365 366
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(
T
tensor-tang 已提交
367 368 369
    fusion_lstm,
    ops::FuisonLSTMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FuisonLSTMKernel<paddle::platform::CPUDeviceContext, double>);