fusion_lstm_op.cc 20.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/detail/activation_functions.h"
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
23 24
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
25
DEFINE_bool(seq_mode, true, "Use sequence mode");
T
tensor-tang 已提交
26 27 28 29 30

namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
31 32 33 34 35
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
36 37 38
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
39 40
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
41 42 43 44
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");
T
tensor-tang 已提交
45 46 47 48 49 50 51 52 53 54
  PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
                 "Output(BatchedInput) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
                 "Output(BatchedHidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
                 "Output(BatchedCell) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
                 "Output(ReorderedH0) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
                 "Output(ReorderedC0) of LSTM should not be null.");
T
tensor-tang 已提交
55

T
tensor-tang 已提交
56 57
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
58 59 60 61 62 63 64 65 66 67 68 69

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
84 85
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
86 87
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
88 89 90 91 92 93 94 95
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

T
tensor-tang 已提交
96 97 98 99 100 101
  PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
                 "Do not support peephole yet.");
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                    "The second dimension of Input(Bias) should be "
                    "4 * %d if disable peepholes connection",
                    frame_size);
T
tensor-tang 已提交
102

T
tensor-tang 已提交
103
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
104 105
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
106 107 108
  ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
  ctx->SetOutputDim("BatchedHidden", out_dims);
  ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
109 110 111
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");

T
tensor-tang 已提交
112 113 114 115 116 117
  int xx_width;
  if (FLAGS_seq_mode) {
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  }
T
tensor-tang 已提交
118 119
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
120 121 122 123 124
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
125
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
126 127 128 129
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
130
  AddInput("X",
T
tensor-tang 已提交
131
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
132
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
133 134 135 136 137 138 139 140 141
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
142 143 144
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
145 146
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
147 148 149 150 151 152 153 154
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
155 156 157 158 159 160 161 162 163 164 165 166
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
167
  AddOutput("Hidden",
T
tensor-tang 已提交
168
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
169 170
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
171
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
172
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
173
  AddOutput("XX",
T
tensor-tang 已提交
174 175 176
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
177 178
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
179 180 181 182 183
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
210 211
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
212 213 214
)DOC");
}

T
tensor-tang 已提交
215
template <typename T>
T
tensor-tang 已提交
216
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
217
 public:
T
tensor-tang 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
256 257
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
258 259 260
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
261

T
tensor-tang 已提交
262
    auto x_lod = x->lod();
T
tensor-tang 已提交
263
    const int total_T = x_dims[0];
T
tensor-tang 已提交
264
    const int N = x_lod[0].size() - 1;  // batch size
T
tensor-tang 已提交
265 266

    const T* x_data = x->data<T>();
T
tensor-tang 已提交
267 268
    const T* h0_data = h0 ? h0->data<T>() : NULL;
    const T* c0_data = c0 ? c0->data<T>() : NULL;
T
tensor-tang 已提交
269
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
270
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
271
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
272 273
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
274 275

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
276
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
T
tensor-tang 已提交
277
                                      xx_data, bias->data<T>());
T
tensor-tang 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
      hidden_out_data = hidden_out_data + offset;
      cell_out_data = cell_out_data + offset;
      xx_offset = -D4;
      gate_offset = -D;
    }

    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
      cell_out_data = cell_out_data + gate_offset;
    };
T
tensor-tang 已提交
294 295

    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
296 297
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
298 299
      const T* prev_c_data = NULL;
      const T* prev_h_data = NULL;
T
tensor-tang 已提交
300 301
      int tstart = 0;
      if (h0_data) {
T
tensor-tang 已提交
302 303
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
T
tensor-tang 已提交
304 305
      } else {
        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
306 307
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
308 309 310
        // cell out= input*tilde
        blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
311
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
312 313 314
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
315 316
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
317 318
        tstart = 1;

T
tensor-tang 已提交
319
        move_step();
T
tensor-tang 已提交
320 321 322
      }
      for (int step = tstart; step < seq_len; ++step) {
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
T
tensor-tang 已提交
323
                  prev_h_data, D, wh_data, D4, static_cast<T>(1), xx_data, D4);
T
tensor-tang 已提交
324 325

        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
326 327
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
328 329

        // a = forget * prev_cell
T
tensor-tang 已提交
330
        blas.VMUL(D, xx_data + D2, prev_c_data, xx_data + D2);
T
tensor-tang 已提交
331 332 333 334 335 336 337 338

        // b = input * tilde
        blas.VMUL(D, xx_data, xx_data + D, xx_data + D);

        // cell out= a+b
        blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data);

        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
339
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
340 341 342
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
343 344
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
345

T
tensor-tang 已提交
346
        move_step();
T
tensor-tang 已提交
347 348
      }
    }
T
tensor-tang 已提交
349 350 351 352
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
353 354 355 356 357 358 359
    INIT_BASE_INPUT_OUTPUT
    if (x->lod()[0].size() == 2) {  // batch size == 1
      SeqCompute(ctx);
    }
    INIT_BASE_SIZES
    INIT_VEC_FUNC

T
tensor-tang 已提交
360 361 362 363 364
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
T
tensor-tang 已提交
365

T
tensor-tang 已提交
366 367
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
368 369 370 371 372 373 374 375
    const T* wh_data = wh->data<T>();
    auto place = ctx.GetPlace();
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
376

T
tensor-tang 已提交
377
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
378 379
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
380 381 382 383
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
384 385
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
386 387 388
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
389
                                        bias->data<T>());
T
tensor-tang 已提交
390 391
    }

T
tensor-tang 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
    T* prev_h_data = NULL;
    T* prev_c_data = NULL;
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      // W_ch, W_ih, W_fh, W_oh
      for (int i = 0; i < max_bs; ++i) {
        act_gate(D3, cur_in_data + D, cur_in_data + D);
        act_cand(D, cur_in_data, cur_in_data);
        // cell out= input*tilde
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_c_out_data);
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

        // add offset
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
439
    }
T
tensor-tang 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    // Then start from next
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D4, D, static_cast<T>(1),
                prev_h_data, D, wh_data, D4, static_cast<T>(1),
                batched_input_data, D4);

      T* cur_in_data = batched_input_data;
      T* cur_prev_c_data = prev_c_data;
      T* cur_c_out_data = batched_c_out_data;
      T* cur_h_out_data = batched_h_out_data;
      for (int i = 0; i < cur_bs; ++i) {
        // W_ch, W_ih, W_fh, W_oh
        act_gate(D3, cur_in_data + D, cur_in_data + D);
        act_cand(D, cur_in_data, cur_in_data);
        // a = forget * prev_cell
        blas.VMUL(D, cur_in_data + D2, cur_prev_c_data, cur_in_data + D2);
        // b = input * tilde
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_in_data + D);
        // cell out= a+b
        blas.VADD(D, cur_in_data + D, cur_in_data + D2, cur_c_out_data);
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

        cur_in_data += D4;
        cur_prev_c_data += D;
        cur_c_out_data += D;
        cur_h_out_data += D;
T
tensor-tang 已提交
475 476
      }

T
tensor-tang 已提交
477 478 479 480 481
      prev_c_data = batched_c_out_data;
      prev_h_data = batched_h_out_data;
      batched_c_out_data = cur_c_out_data;
      batched_h_out_data = cur_h_out_data;
      batched_input_data = cur_in_data;
T
tensor-tang 已提交
482 483 484
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
485 486 487 488
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
489
  }
T
tensor-tang 已提交
490

T
tensor-tang 已提交
491 492 493 494 495 496 497
  void Compute(const framework::ExecutionContext& ctx) const override {
    if (FLAGS_seq_mode) {
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
498 499 500
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
501 502 503 504 505 506
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
507
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
508 509
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
510 511
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);