concat_op.cc 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
1
123malin 已提交
16

17
#include <paddle/fluid/platform/complex.h>
P
phlrain 已提交
18
#include <memory>
S
Siddharth Goyal 已提交
19
#include <string>
20 21
#include <vector>

22 23
#include "paddle/pten/kernels/funcs/concat_funcs.h"

P
phlrain 已提交
24 25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

28 29
namespace paddle {
namespace operators {
30
using Tensor = framework::Tensor;
31 32 33 34 35

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

36
  void InferShape(framework::InferShapeContext *ctx) const override {
37 38
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "Concat");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Concat");
39

40
    auto inputs_dims = ctx->GetInputsDim("X");
41

42
    const size_t inputs_num = inputs_dims.size();
43 44 45 46 47
    PADDLE_ENFORCE_GT(
        inputs_num, static_cast<size_t>(0),
        platform::errors::InvalidArgument(
            "The number of input tensors in concat op should > 0. But "
            "received inputs' length is 0."));
48
    if (inputs_num == 1) {
49 50
      VLOG(3) << "Warning: concat op have only one input, may waste memory";
    }
51

52 53 54 55 56 57 58 59 60
    if (ctx->HasInput("AxisTensor")) {
      auto out_dims =
          framework::make_ddim(std::vector<int>(inputs_dims[0].size(), -1));
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      size_t axis =
          ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
                      static_cast<int64_t>(inputs_dims[0].size()));
61 62
      framework::DDim out_dims = pten::funcs::ComputeAndCheckShape(
          ctx->IsRuntime(), inputs_dims, axis);
63 64
      if (out_dims[axis] < 0) {
        out_dims[axis] = -1;
65
      }
66 67
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
68 69
    }
  }
P
phlrain 已提交
70 71 72 73

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
74
    auto inputs = ctx.MultiInput<Tensor>("X");
75 76
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
77 78
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
79
        input_data_type = framework::TransToProtoVarType(input->dtype());
80 81 82 83 84
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
1
123malin 已提交
85 86
      PADDLE_THROW(platform::errors::InvalidArgument(
          "All Inputs of Concat OP are Empty!"));
87
    }
P
phlrain 已提交
88
#ifdef PADDLE_WITH_MKLDNN
89
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
P
phlrain 已提交
90 91 92 93 94 95 96
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
97 98 99 100 101 102 103 104 105 106

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
107 108 109 110
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
111
  void Make() override {
112 113
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
P
phlrain 已提交
114 115 116
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
Z
zmx 已提交
117 118
        .SetDefault(false)
        .AsExtra();
119
    AddAttr<int>("axis",
120 121 122 123
                 "The axis along which the input tensors will be concatenated."
                 "The axis could also be negative numbers. Negative axis is "
                 "interpreted as counting from the end of the rank."
                 "i.e., axis + rank(X) th dimension.")
124
        .SetDefault(0);
125 126 127 128 129 130
    AddInput("AxisTensor",
             "(Tensor) The axis along which the input tensors will be "
             "concatenated.  "
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1].")
        .AsDispensable();
131 132 133 134
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
Z
zmx 已提交
135 136
        .SetDefault(false)
        .AsExtra();
137 138 139 140
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
Z
zmx 已提交
141 142
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
143 144 145 146 147 148 149 150 151 152 153 154 155
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
156 157 158
  }
};

159 160
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
P
phlrain 已提交
161
  using framework::OperatorWithKernel::OperatorWithKernel;
162

163
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
164 165 166
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
H
hong 已提交
167 168

    ctx->ShareAllLoD(in_x, out_x_g_n);
169
  }
P
phlrain 已提交
170 171 172 173

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    // extra checking if attr "use_mkldnn" exist is needed because
    // test_reverse_op is calling concat_grad kernel without setting
    // "use_mkldnn" to any value
    if (ctx.HasAttr("use_mkldnn") &&
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
P
phlrain 已提交
189
  }
190 191 192 193 194 195 196 197 198 199

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
P
phlrain 已提交
200 201
};

202
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ConcatOpGradNoNeedBufferVarInferer, "X");
P
phlrain 已提交
203

H
hong 已提交
204 205
template <typename T>
class ConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
P
phlrain 已提交
206
 public:
H
hong 已提交
207
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
P
phlrain 已提交
208 209

 protected:
210
  void Apply(GradOpPtr<T> op) const override {
P
phlrain 已提交
211
    op->SetType("concat_grad");
H
hong 已提交
212
    op->SetInput("X", this->Input("X"));
H
hong 已提交
213 214 215
    if (this->HasInput("AxisTensor")) {
      op->SetInput("AxisTensor", this->Input("AxisTensor"));
    }
H
hong 已提交
216 217 218
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
P
phlrain 已提交
219
  }
220 221
};

C
ceci3 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235
template <typename T>
class ConcatDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("concat");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

236 237 238 239
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
240
REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker,
H
hong 已提交
241 242
                  ops::ConcatGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatGradOpMaker<paddle::imperative::OpBase>);
P
phlrain 已提交
243
REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad,
C
ceci3 已提交
244 245
                  ops::ConcatDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatDoubleGradOpMaker<paddle::imperative::OpBase>,
246
                  ops::ConcatOpGradNoNeedBufferVarInferer);
247 248 249 250 251 252 253 254 255 256 257 258 259
REGISTER_OP_CPU_KERNEL(
    concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::float16>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::complex<float>>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::complex<double>>);
C
chengduoZH 已提交
260 261
REGISTER_OP_CPU_KERNEL(
    concat_grad,
262 263
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>,
264
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, bool>,
265
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
266 267
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::float16>,
L
liuyuhui 已提交
268
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int>,
269 270 271 272 273
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::complex<float>>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::complex<double>>);