concat_op.cc 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
P
phlrain 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
18 19
#include <vector>

P
phlrain 已提交
20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

24 25
namespace paddle {
namespace operators {
26
using Tensor = framework::Tensor;
27 28 29 30 31

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

32
  void InferShape(framework::InferShapeContext *ctx) const override {
33
    PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
H
hutuxian 已提交
34
                      "Inputs(X) of ConcatOp should not be empty.");
H
hong 已提交
35

36 37
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of ConcatOp should not be null.");
38

39
    auto inputs_dims = ctx->GetInputsDim("X");
40

41 42
    const size_t inputs_num = inputs_dims.size();
    PADDLE_ENFORCE_GT(inputs_num, 0,
43 44
                      "ShapeError: Input tensors count should > 0. But "
                      "recevied inputs' length is 0.");
45
    if (inputs_num == 1) {
46 47
      VLOG(3) << "Warning: concat op have only one input, may waste memory";
    }
48

49 50 51 52 53 54 55 56 57 58 59 60 61
    if (ctx->HasInput("AxisTensor")) {
      auto out_dims =
          framework::make_ddim(std::vector<int>(inputs_dims[0].size(), -1));
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      size_t axis =
          ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
                      static_cast<int64_t>(inputs_dims[0].size()));
      framework::DDim out_dims =
          ComputeAndCheckShape(ctx->IsRuntime(), inputs_dims, axis);
      if (out_dims[axis] < 0) {
        out_dims[axis] = -1;
62
      }
63 64
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
65 66
    }
  }
P
phlrain 已提交
67 68 69 70

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
71
    auto inputs = ctx.MultiInput<Tensor>("X");
72 73
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
74 75 76
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
        input_data_type = input->type();
77 78 79 80 81 82 83
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
      PADDLE_THROW("All Inputs of Concat OP are Empty!");
    }
P
phlrain 已提交
84 85 86 87 88 89 90 91 92
#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
93 94 95 96 97 98 99 100 101 102

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
103 104 105 106
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
107
  void Make() override {
108 109
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
P
phlrain 已提交
110 111 112 113
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
        .SetDefault(false);
114
    AddAttr<int>("axis",
115 116 117 118
                 "The axis along which the input tensors will be concatenated."
                 "The axis could also be negative numbers. Negative axis is "
                 "interpreted as counting from the end of the rank."
                 "i.e., axis + rank(X) th dimension.")
119
        .SetDefault(0);
120 121 122 123 124 125
    AddInput("AxisTensor",
             "(Tensor) The axis along which the input tensors will be "
             "concatenated.  "
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1].")
        .AsDispensable();
126 127 128 129 130 131
    AddAttr<bool>("use_quantizer",
                  "(bool, default false) "
                  "Set to true for operators that should be quantized and use "
                  "int8 kernel. "
                  "Only used on CPU.")
        .SetDefault(false);
132 133 134 135 136 137 138 139 140 141 142 143 144
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
145 146 147
  }
};

148 149
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
P
phlrain 已提交
150
  using framework::OperatorWithKernel::OperatorWithKernel;
151

152
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
153 154 155
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
H
hong 已提交
156 157

    ctx->ShareAllLoD(in_x, out_x_g_n);
158
  }
P
phlrain 已提交
159 160 161 162

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
163 164 165
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
P
phlrain 已提交
166
  }
167 168 169 170 171 172 173 174 175 176

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
P
phlrain 已提交
177 178
};

179
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ConcatOpGradNoNeedBufferVarInference, "X");
P
phlrain 已提交
180

H
hong 已提交
181 182
template <typename T>
class ConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
P
phlrain 已提交
183
 public:
H
hong 已提交
184
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
P
phlrain 已提交
185 186

 protected:
187
  void Apply(GradOpPtr<T> op) const override {
P
phlrain 已提交
188
    op->SetType("concat_grad");
H
hong 已提交
189
    op->SetInput("X", this->Input("X"));
H
hong 已提交
190 191 192
    if (this->HasInput("AxisTensor")) {
      op->SetInput("AxisTensor", this->Input("AxisTensor"));
    }
H
hong 已提交
193 194 195
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
P
phlrain 已提交
196
  }
197 198
};

199 200 201 202
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
203
REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker,
H
hong 已提交
204 205
                  ops::ConcatGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatGradOpMaker<paddle::imperative::OpBase>);
P
phlrain 已提交
206 207
REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad,
                  ops::ConcatOpGradNoNeedBufferVarInference);
C
chengduoZH 已提交
208
REGISTER_OP_CPU_KERNEL(
209 210 211 212
    concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int>);
C
chengduoZH 已提交
213 214
REGISTER_OP_CPU_KERNEL(
    concat_grad,
215 216 217 218
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int>);