tensor.py 8.2 KB
Newer Older
Y
Yu Yang 已提交
1
from ..layer_helper import LayerHelper
2
from ..param_attr import ParamAttr
Y
Yu Yang 已提交
3 4

__all__ = [
5 6 7 8 9 10 11 12 13 14
    'create_tensor',
    'create_parameter',
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'ones',
    'zeros',
Y
Yu Yang 已提交
15 16 17
]


18
def create_tensor(dtype, name=None):
Y
Yu Yang 已提交
19 20 21 22
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)


23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
def create_parameter(shape,
                     dtype,
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
    helper = LayerHelper("create_parameter")
    if attr is None:
        attr = ParamAttr()
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


50
def cast(x, dtype):
Y
Yu Yang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


66
def concat(input, axis=0):
Y
Yu Yang 已提交
67
    """
68 69 70
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
71
    and returns that as the output.
72 73 74 75 76 77 78 79 80 81 82

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
83 84 85 86 87 88 89 90 91 92 93
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


94
def sums(input, out=None):
K
kavyasrinet 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
          mean_a0 = layers.mean(x=a0)
          mean_a1 = layers.mean(x=a1)
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
117 118 119 120 121 122 123 124
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


125
def assign(input, output):
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
        input(Variable): The source variable
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
144 145 146 147 148 149 150 151 152
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


153
def fill_constant(shape, dtype, value, out=None):
Y
Yu Yang 已提交
154
    """
155 156
    **fill_constant**

K
kavyasrinet 已提交
157
    This function creates a tensor of specified *shape* and
158
    *dtype*, and initializes this with a constant supplied in *value*.
K
kavyasrinet 已提交
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        out(Variable): Output Variable to initialize

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    """
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
195
                                  output_dim_idx=0):
196 197 198
    """
    **fill_constant_batch_size_like**

K
kavyasrinet 已提交
199 200 201
    This function creates a tensor of specified *shape*, *dtype* and batch size,
    and initializes this with a constant supplied in *value*. The batch size is
    obtained from the `input` tensor.
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

    It also sets *stop_gradient* to True.

    Args:
        input(Variable): Tensor whose dimensions will be used to get batch size
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        input_dim_idx(int): Index of input's batch size dimension
        output_dim_idx(int): Index of output's batch size dimension

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

219 220
          data = fluid.layers.fill_constant_batch_size_like(
              input=like, shape=[1], value=0, dtype='int64')
221
    """
Y
Yu Yang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


239
def ones(shape, dtype):
Y
Yu Yang 已提交
240
    """
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
259 260 261 262
    """
    return fill_constant(value=1.0, **locals())


263
def zeros(shape, dtype):
Y
Yu Yang 已提交
264
    """
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
283 284
    """
    return fill_constant(value=0.0, **locals())