tensor.py 4.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8
from ..layer_helper import LayerHelper

__all__ = [
    'create_tensor', 'cast', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros'
]


9
def create_tensor(dtype, name=None):
Y
Yu Yang 已提交
10 11 12 13
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)


14
def cast(x, dtype):
Y
Yu Yang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


30
def concat(input, axis):
Y
Yu Yang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


45
def sums(input, out=None):
Y
Yu Yang 已提交
46 47 48 49 50 51 52 53 54 55 56
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


57
def assign(input, output):
Y
Yu Yang 已提交
58 59 60 61 62 63 64 65 66
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


67
def fill_constant(shape, dtype, value, out=None):
Y
Yu Yang 已提交
68
    """
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    **fill_constant**

    This function creates a tensor of specified *shape* and 
    *dtype*, and initializes this with a constant supplied in *value*.
    
    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        out(Variable): Output Variable to initialize

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    """
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
109
                                  output_dim_idx=0):
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    """
    **fill_constant_batch_size_like**

    This function creates a tensor of specified *shape*, *dtype* and batch size, 
    and initializes this with a constant supplied in *value*. The batch size is 
    obtained from the `input` tensor. 

    It also sets *stop_gradient* to True.

    Args:
        input(Variable): Tensor whose dimensions will be used to get batch size
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        input_dim_idx(int): Index of input's batch size dimension
        output_dim_idx(int): Index of output's batch size dimension

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
    """
Y
Yu Yang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


152
def ones(shape, dtype):
Y
Yu Yang 已提交
153 154 155 156 157 158 159
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
    return fill_constant(value=1.0, **locals())


160
def zeros(shape, dtype):
Y
Yu Yang 已提交
161 162 163 164 165
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
    return fill_constant(value=0.0, **locals())