tensor.py 3.6 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8
from ..layer_helper import LayerHelper

__all__ = [
    'create_tensor', 'cast', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros'
]


9
def create_tensor(dtype, name=None):
Y
Yu Yang 已提交
10 11 12 13
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)


14
def cast(x, dtype):
Y
Yu Yang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


30
def concat(input, axis):
Y
Yu Yang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


45
def sums(input, out=None):
Y
Yu Yang 已提交
46 47 48 49 50 51 52 53 54 55 56
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


57
def assign(input, output):
Y
Yu Yang 已提交
58 59 60 61 62 63 64 65 66
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


67
def fill_constant(shape, dtype, value, out=None):
Y
Yu Yang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    """
    This function creates a tensor , with shape as mentioned in the input and
    specified dtype and fills this up with a constant value that
    comes in the input. It also sets the stop_gradient to be True.
    """
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
92
                                  output_dim_idx=0):
Y
Yu Yang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


110
def ones(shape, dtype):
Y
Yu Yang 已提交
111 112 113 114 115 116 117
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
    return fill_constant(value=1.0, **locals())


118
def zeros(shape, dtype):
Y
Yu Yang 已提交
119 120 121 122 123
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
    return fill_constant(value=0.0, **locals())