gaussian_random_op.cc 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dongzhihong 已提交
14

Q
qijun 已提交
15
#include <random>
Y
yaoxuefeng 已提交
16

17
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/operators/fill_constant_op.h"
20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dongzhihong 已提交
24 25
namespace paddle {
namespace operators {
D
dongzhihong 已提交
26

27
using Tensor = framework::Tensor;
Q
qijun 已提交
28
template <typename T>
Y
Yu Yang 已提交
29
class CPUGaussianRandomKernel : public framework::OpKernel<T> {
30 31 32 33 34
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
yaoxuefeng 已提交
35

36
    std::normal_distribution<T> dist(mean, std);
37
    auto shape = GetShape(context);
38 39 40
    tensor->Resize(shape);
    int64_t size = tensor->numel();
    T* data = tensor->mutable_data<T>(context.GetPlace());
L
Leo Chen 已提交
41 42
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    auto engine = framework::GetCPURandomEngine(seed);
43

L
Leo Chen 已提交
44 45
    for (int64_t i = 0; i < size; ++i) {
      data[i] = dist(*engine);
46 47
    }
  }
L
Leo Chen 已提交
48
};  // namespace operators
49 50 51

template <typename T>
class CPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
Q
qijun 已提交
52 53
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
54 55
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
56 57 58
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
59
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
60 61 62 63 64 65
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
66
    int64_t size = tensor->numel();
Q
qijun 已提交
67
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
68 69 70 71 72
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
73
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
74 75
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
76

77
  void InferShape(framework::InferShapeContext* ctx) const override {
78 79
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "GaussianRandom");

T
tangwei12 已提交
80
    auto shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
Q
qijun 已提交
81
    std::vector<int64_t> temp;
82 83
    temp.reserve(shape.size());
    for (auto dim : shape) {
Q
qijun 已提交
84 85
      temp.push_back(static_cast<int64_t>(dim));
    }
86 87 88 89 90 91 92 93 94 95 96
    if (shape.empty() && ctx->HasInput("ShapeTensor")) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_dims));

      return;
    }
97
    if (!ctx->HasInput("ShapeTensor") && !ctx->HasInputs("ShapeTensorList")) {
98 99 100 101 102 103 104 105
      PADDLE_ENFORCE_GT(
          shape.size(), 0UL,
          platform::errors::InvalidArgument(
              "Attribute(shape) of GaussianRandomOp must be set "
              "and shape.size() > 0, but reveived shape.size() is %d",
              shape.size()));
    }

Q
Qiao Longfei 已提交
106
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
D
dongzhihong 已提交
107
  }
Y
Yu Yang 已提交
108

109
 protected:
110
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
111
      const framework::ExecutionContext& ctx) const override {
112 113 114 115 116 117 118 119 120 121 122
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

Y
Yu Yang 已提交
123
    return framework::OpKernelType(
124
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
125
        ctx.device_context(), layout, library);
Y
Yu Yang 已提交
126
  }
127 128 129 130 131 132 133 134 135 136

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "ShapeTensor" || var_name == "ShapeTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
D
dongzhihong 已提交
137 138
};

D
dongzhihong 已提交
139
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
140
 public:
Y
Yu Yang 已提交
141
  void Make() override {
K
kexinzhao 已提交
142
    AddOutput("Out", "Output matrix of gaussian random op");
143

T
tangwei12 已提交
144 145
    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) "
146 147 148 149 150 151 152 153 154 155 156 157
                                  "The dimension of random tensor.")
        .SetDefault({});
    AddInput("ShapeTensor",
             "(Tensor<int>), optional). The shape of the output."
             "It has a higher priority than Attr(shape).")
        .AsDispensable();
    AddInput("ShapeTensorList",
             "(vector<Tensor<int>>, optional). The shape of the output. "
             "It has a higher priority than Attr(shape)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
K
kexinzhao 已提交
158 159 160 161 162 163 164 165
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
Q
qijun 已提交
166
    AddAttr<int>("seed",
K
kexinzhao 已提交
167
                 "(int, default 0) "
Q
qijun 已提交
168
                 "Random seed of generator."
169 170 171
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
172
        .SetDefault(0);
F
fengjiayi 已提交
173
    AddAttr<int>("dtype",
K
kexinzhao 已提交
174 175
                 "(int, default 5(FP32)) "
                 "Output data type.")
176
        .SetDefault(framework::proto::VarType::FP32);
177 178 179
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
180 181 182 183 184 185
    AddComment(R"DOC(
GaussianRandom Operator.

Used to initialize tensors with gaussian random generator.

)DOC");
D
dongzhihong 已提交
186 187 188 189 190 191
  }
};

}  // namespace operators
}  // namespace paddle

192
namespace ops = paddle::operators;
F
fengjiayi 已提交
193 194
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
195 196 197
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>,
                       ops::CPUGaussianRandomKernel<double>);
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
198 199
                       ops::CPUGaussianRandomBatchSizeLikeKernel<float>,
                       ops::CPUGaussianRandomBatchSizeLikeKernel<double>);