gaussian_random_op.cc 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dongzhihong 已提交
14

Q
qijun 已提交
15
#include <random>
Y
yaoxuefeng 已提交
16

17
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/operators/fill_constant_op.h"
20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dongzhihong 已提交
24 25
namespace paddle {
namespace operators {
D
dongzhihong 已提交
26

27
using Tensor = framework::Tensor;
Q
qijun 已提交
28
template <typename T>
Y
Yu Yang 已提交
29
class CPUGaussianRandomKernel : public framework::OpKernel<T> {
30 31 32 33 34
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
yaoxuefeng 已提交
35

36 37 38 39 40 41 42
    std::normal_distribution<T> dist(mean, std);
    const std::string op_type = "gaussian_random";
    auto shape = GetShape(context, op_type);
    tensor->Resize(shape);
    int64_t size = tensor->numel();
    T* data = tensor->mutable_data<T>(context.GetPlace());

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    if (framework::Generator::GetInstance()->is_init_py) {
      std::mt19937_64& gen_engine =
          framework::Generator::GetInstance()->GetCPUEngine();
      for (int64_t i = 0; i < size; ++i) {
        data[i] = dist(gen_engine);
      }
    } else {
      unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
      std::minstd_rand engine;
      if (seed == 0) {
        seed = std::random_device()();
      }
      engine.seed(seed);
      for (int64_t i = 0; i < size; ++i) {
        data[i] = dist(engine);
      }
59 60 61 62 63 64
    }
  }
};

template <typename T>
class CPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
Q
qijun 已提交
65 66
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
67 68
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
69 70 71
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
72
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
73 74 75 76 77 78
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
79
    int64_t size = tensor->numel();
Q
qijun 已提交
80
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
81 82 83 84 85
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
86
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
87 88
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
89

90
  void InferShape(framework::InferShapeContext* ctx) const override {
91 92
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "GaussianRandom");

T
tangwei12 已提交
93
    auto shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
Q
qijun 已提交
94
    std::vector<int64_t> temp;
95 96
    temp.reserve(shape.size());
    for (auto dim : shape) {
Q
qijun 已提交
97 98
      temp.push_back(static_cast<int64_t>(dim));
    }
99 100 101 102 103 104 105 106 107 108 109
    if (shape.empty() && ctx->HasInput("ShapeTensor")) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_dims));

      return;
    }
110
    if (!ctx->HasInput("ShapeTensor") && !ctx->HasInputs("ShapeTensorList")) {
111 112 113 114 115 116 117 118
      PADDLE_ENFORCE_GT(
          shape.size(), 0UL,
          platform::errors::InvalidArgument(
              "Attribute(shape) of GaussianRandomOp must be set "
              "and shape.size() > 0, but reveived shape.size() is %d",
              shape.size()));
    }

Q
Qiao Longfei 已提交
119
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
D
dongzhihong 已提交
120
  }
Y
Yu Yang 已提交
121

122
 protected:
123
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
124
      const framework::ExecutionContext& ctx) const override {
125 126 127 128 129 130 131 132 133 134 135
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

Y
Yu Yang 已提交
136
    return framework::OpKernelType(
137
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
138
        ctx.device_context(), layout, library);
Y
Yu Yang 已提交
139
  }
140 141 142 143 144 145 146 147 148 149

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "ShapeTensor" || var_name == "ShapeTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
D
dongzhihong 已提交
150 151
};

D
dongzhihong 已提交
152
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
153
 public:
Y
Yu Yang 已提交
154
  void Make() override {
K
kexinzhao 已提交
155
    AddOutput("Out", "Output matrix of gaussian random op");
156

T
tangwei12 已提交
157 158
    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) "
159 160 161 162 163 164 165 166 167 168 169 170
                                  "The dimension of random tensor.")
        .SetDefault({});
    AddInput("ShapeTensor",
             "(Tensor<int>), optional). The shape of the output."
             "It has a higher priority than Attr(shape).")
        .AsDispensable();
    AddInput("ShapeTensorList",
             "(vector<Tensor<int>>, optional). The shape of the output. "
             "It has a higher priority than Attr(shape)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
K
kexinzhao 已提交
171 172 173 174 175 176 177 178
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
Q
qijun 已提交
179
    AddAttr<int>("seed",
K
kexinzhao 已提交
180
                 "(int, default 0) "
Q
qijun 已提交
181
                 "Random seed of generator."
182 183 184
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
185
        .SetDefault(0);
F
fengjiayi 已提交
186
    AddAttr<int>("dtype",
K
kexinzhao 已提交
187 188
                 "(int, default 5(FP32)) "
                 "Output data type.")
189
        .SetDefault(framework::proto::VarType::FP32);
190 191 192
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
193 194 195 196 197 198
    AddComment(R"DOC(
GaussianRandom Operator.

Used to initialize tensors with gaussian random generator.

)DOC");
D
dongzhihong 已提交
199 200 201 202 203 204
  }
};

}  // namespace operators
}  // namespace paddle

205
namespace ops = paddle::operators;
F
fengjiayi 已提交
206 207
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
208 209 210
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>,
                       ops::CPUGaussianRandomKernel<double>);
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
211 212
                       ops::CPUGaussianRandomBatchSizeLikeKernel<float>,
                       ops::CPUGaussianRandomBatchSizeLikeKernel<double>);