test_desc_clone.py 9.7 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import collections
import functools
import unittest

L
LoneRanger 已提交
19 20
import nets

G
gongweibao 已提交
21
import paddle
22
from paddle import fluid
G
gongweibao 已提交
23 24 25 26 27
from paddle.fluid import core

SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()
28
paddle.enable_static()
G
gongweibao 已提交
29 30 31 32 33


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
L
LoneRanger 已提交
34
    conv_pool_1 = nets.simple_img_conv_pool(
35 36 37 38 39 40 41
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
L
LoneRanger 已提交
42
    conv_pool_2 = nets.simple_img_conv_pool(
43 44 45 46 47 48 49
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
G
gongweibao 已提交
50 51 52 53

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
54 55 56 57
    param_shape = [functools.reduce(lambda a, b: a * b, input_shape[1:], 1)] + [
        SIZE
    ]
    scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5
G
gongweibao 已提交
58

C
Charles-hit 已提交
59 60
    predict = paddle.static.nn.fc(
        x=conv_pool_2,
G
gongweibao 已提交
61
        size=SIZE,
C
Charles-hit 已提交
62 63
        activation="softmax",
        weight_attr=fluid.param_attr.ParamAttr(
64
            initializer=paddle.nn.initializer.Normal(loc=0.0, scale=scale)
65 66
        ),
    )
G
gongweibao 已提交
67 68 69 70 71
    return predict


def get_model(batch_size):
    # Input data
G
GGBond8488 已提交
72 73 74 75
    images = paddle.static.data(
        name='pixel', shape=[-1, 1, 28, 28], dtype=DTYPE
    )
    label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64')
G
gongweibao 已提交
76 77 78

    # Train program
    predict = cnn_model(images)
79 80 81
    cost = paddle.nn.functional.cross_entropy(
        input=predict, label=label, reduction='none', use_softmax=False
    )
82
    avg_cost = paddle.mean(x=cost)
G
gongweibao 已提交
83 84

    # Evaluator
85
    batch_size_tensor = paddle.tensor.create_tensor(dtype='int64')
86
    batch_acc = paddle.static.accuracy(
87 88
        input=predict, label=label, total=batch_size_tensor
    )
G
gongweibao 已提交
89 90 91

    inference_program = fluid.default_main_program().clone()
    # Optimization
92 93 94
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999
    )
G
gongweibao 已提交
95 96

    # Reader
97 98 99 100 101 102
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=batch_size
    )
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=batch_size
    )
G
gongweibao 已提交
103
    opt.minimize(avg_cost)
104 105 106 107 108 109 110 111
    return (
        inference_program,
        avg_cost,
        train_reader,
        test_reader,
        batch_acc,
        predict,
    )
G
gongweibao 已提交
112 113 114


def operator_equal(a, b):
115
    if a.__str__() != b.__str__():
G
gongweibao 已提交
116 117
        raise ValueError("In operator_equal not equal\n")

118
    for k, v in a.__dict__.items():
119
        if isinstance(v, (fluid.framework.Program, fluid.framework.Block)):
G
gongweibao 已提交
120 121 122
            continue

        elif isinstance(v, core.OpDesc):
G
gongweibao 已提交
123
            continue
G
gongweibao 已提交
124 125

        elif isinstance(v, collections.OrderedDict):
126 127
            v0 = sorted(v.items(), key=lambda x: x[0])
            v1 = sorted(b.__dict__[k].items(), key=lambda x: x[0])
G
gongweibao 已提交
128 129

            if v0 != v1:
130
                raise ValueError(f"In operator_equal not equal:{k}\n")
G
gongweibao 已提交
131

132
        elif v != b.__dict__[k]:
133
            raise ValueError(f"In operator_equal not equal:{k}\n")
G
gongweibao 已提交
134 135 136 137 138

    return True


def block_equal(a, b):
139
    for k, v in a.__dict__.items():
140 141
        if isinstance(
            v, (core.ProgramDesc, fluid.framework.Program, core.BlockDesc)
142
        ):
G
gongweibao 已提交
143 144
            continue
        elif k == "ops":
145
            assert len(a.ops) == len(b.ops)
G
gongweibao 已提交
146 147
            for i in range(0, len(a.ops)):
                if not operator_equal(a.ops[i], b.ops[i]):
148
                    raise ValueError(f"In block_equal not equal:{k}\n")
G
gongweibao 已提交
149 150

        elif isinstance(v, collections.OrderedDict):
151
            for key, value in v.items():
M
minqiyang 已提交
152
                if str(value) != str(b.__dict__[k][key]):
153
                    raise ValueError(f"In block_equal not equal:{k}\n")
G
gongweibao 已提交
154

155
        elif v != b.__dict__[k]:
156
            raise ValueError(f"In block_equal not equal:{k}\n")
G
gongweibao 已提交
157 158 159 160 161

    return True


def program_equal(a, b):
162
    for k, v in a.__dict__.items():
G
gongweibao 已提交
163 164 165 166 167 168
        if isinstance(v, core.ProgramDesc):
            continue

        elif k == 'blocks':
            for i in range(0, len(a.blocks)):
                if not block_equal(a.blocks[i], b.blocks[i]):
169
                    raise ValueError(f"In operator_equal not equal:{k}\n")
G
gongweibao 已提交
170
                    return False
171
            assert len(a.blocks) == len(b.blocks)
172 173
        elif k == '_auto_checkpoint_name':
            continue
174
        elif v != b.__dict__[k]:
175
            raise ValueError(f"In program_equal not equal:{k}\n")
G
gongweibao 已提交
176 177 178 179

    return True


180 181 182 183 184
class TestCloneWithStopGradient(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
185
            img = paddle.static.data(name='image', shape=[-1, 784])
C
Charles-hit 已提交
186
            hidden1 = paddle.static.nn.fc(x=img, size=200, activation='relu')
187
            hidden1.stop_gradient = True
C
ccrrong 已提交
188
            hidden2 = paddle.nn.functional.dropout(hidden1, p=0.5)
189
            loss = paddle.nn.functional.cross_entropy(
C
Charles-hit 已提交
190 191 192
                input=paddle.static.nn.fc(
                    hidden2, size=10, activation='softmax'
                ),
G
GGBond8488 已提交
193 194 195
                label=paddle.static.data(
                    name='label', shape=[-1, 1], dtype='int64'
                ),
196 197
                reduction='none',
                use_softmax=False,
198
            )
199
            avg_loss = paddle.mean(loss)
200 201 202
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
203 204
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
205
        self.assertEqual(
206
            test_program.block(0).var(hidden2.name).stop_gradient, True
207
        )
208 209 210 211 212 213 214


class TestCloneWithStopGradientInSubBlock(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
215
            img = paddle.static.data(name='image', shape=[-1, 784])
216
            true = paddle.ones(shape=[1], dtype="float32")
C
Charles-hit 已提交
217
            hidden1 = paddle.static.nn.fc(x=img, size=200, activation='relu')
218 219
            hidden1.stop_gradient = True

220
            cond = paddle.equal(true, true)
221 222

            def true_fn():
C
ccrrong 已提交
223
                hidden2 = paddle.nn.functional.dropout(hidden1, p=0.5)
224 225 226 227
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
C
ccrrong 已提交
228
                hidden2 = paddle.nn.functional.dropout(hidden1, p=0.6)
229 230
                return hidden2

231
            hidden2 = paddle.static.nn.cond(cond, true_fn, false_fn)
232

233
            loss = paddle.nn.functional.cross_entropy(
C
Charles-hit 已提交
234 235 236
                input=paddle.static.nn.fc(
                    hidden2, size=10, activation='softmax'
                ),
G
GGBond8488 已提交
237 238 239
                label=paddle.static.data(
                    name='label', shape=[-1, 1], dtype='int64'
                ),
240 241
                reduction='none',
                use_softmax=False,
242
            )
243
            avg_loss = paddle.mean(loss)
244 245 246
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
247 248
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
249 250 251 252 253 254 255 256 257 258 259 260 261
        for var in test_program.block(1).vars.values():
            var2 = train_program.block(1).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)
        for var in test_program.block(2).vars.values():
            var2 = train_program.block(2).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)


class TestCloneWithRaise(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
262
            img = paddle.static.data(name='image', shape=[-1, 784])
263
            true = paddle.ones(shape=[1], dtype="float32")
C
Charles-hit 已提交
264
            hidden1 = paddle.static.nn.fc(x=img, size=200, activation='relu')
265 266
            hidden1.stop_gradient = True

267
            cond = paddle.equal(true, true)
268 269

            def true_fn():
C
ccrrong 已提交
270
                hidden2 = paddle.nn.functional.dropout(hidden1, p=0.5)
271 272 273 274
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
C
ccrrong 已提交
275
                hidden2 = paddle.nn.functional.dropout(hidden1, p=0.6)
276 277
                return hidden2

278
            hidden2 = paddle.static.nn.cond(cond, true_fn, false_fn)
279
            loss = paddle.nn.functional.cross_entropy(
C
Charles-hit 已提交
280 281 282
                input=paddle.static.nn.fc(
                    hidden2, size=10, activation='softmax'
                ),
G
GGBond8488 已提交
283 284 285
                label=paddle.static.data(
                    name='label', shape=[-1, 1], dtype='int64'
                ),
286 287
                reduction='none',
                use_softmax=False,
288
            )
289
            avg_loss = paddle.mean(loss)
290 291
            test_program = train_program.clone(for_test=False)

292 293 294 295 296 297 298 299
        self.assertRaises(
            ValueError, train_program._copy_data_info_from, startup_program
        )
        self.assertRaises(
            TypeError,
            train_program._copy_data_info_from,
            startup_program.block(0),
        )
300 301


G
gongweibao 已提交
302 303
if __name__ == "__main__":
    unittest.main()