# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import functools import unittest import nets import paddle from paddle import fluid from paddle.fluid import core SEED = 1 DTYPE = "float32" paddle.dataset.mnist.fetch() paddle.enable_static() # random seed must set before configuring the network. # fluid.default_startup_program().random_seed = SEED def cnn_model(data): conv_pool_1 = nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu", ) conv_pool_2 = nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu", ) # TODO(dzhwinter) : refine the initializer and random seed settting SIZE = 10 input_shape = conv_pool_2.shape param_shape = [functools.reduce(lambda a, b: a * b, input_shape[1:], 1)] + [ SIZE ] scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5 predict = paddle.static.nn.fc( x=conv_pool_2, size=SIZE, activation="softmax", weight_attr=fluid.param_attr.ParamAttr( initializer=paddle.nn.initializer.Normal(loc=0.0, scale=scale) ), ) return predict def get_model(batch_size): # Input data images = paddle.static.data( name='pixel', shape=[-1, 1, 28, 28], dtype=DTYPE ) label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64') # Train program predict = cnn_model(images) cost = paddle.nn.functional.cross_entropy( input=predict, label=label, reduction='none', use_softmax=False ) avg_cost = paddle.mean(x=cost) # Evaluator batch_size_tensor = paddle.tensor.create_tensor(dtype='int64') batch_acc = paddle.static.accuracy( input=predict, label=label, total=batch_size_tensor ) inference_program = fluid.default_main_program().clone() # Optimization opt = fluid.optimizer.AdamOptimizer( learning_rate=0.001, beta1=0.9, beta2=0.999 ) # Reader train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=batch_size ) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size ) opt.minimize(avg_cost) return ( inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, ) def operator_equal(a, b): if a.__str__() != b.__str__(): raise ValueError("In operator_equal not equal\n") for k, v in a.__dict__.items(): if isinstance(v, (fluid.framework.Program, fluid.framework.Block)): continue elif isinstance(v, core.OpDesc): continue elif isinstance(v, collections.OrderedDict): v0 = sorted(v.items(), key=lambda x: x[0]) v1 = sorted(b.__dict__[k].items(), key=lambda x: x[0]) if v0 != v1: raise ValueError(f"In operator_equal not equal:{k}\n") elif v != b.__dict__[k]: raise ValueError(f"In operator_equal not equal:{k}\n") return True def block_equal(a, b): for k, v in a.__dict__.items(): if isinstance( v, (core.ProgramDesc, fluid.framework.Program, core.BlockDesc) ): continue elif k == "ops": assert len(a.ops) == len(b.ops) for i in range(0, len(a.ops)): if not operator_equal(a.ops[i], b.ops[i]): raise ValueError(f"In block_equal not equal:{k}\n") elif isinstance(v, collections.OrderedDict): for key, value in v.items(): if str(value) != str(b.__dict__[k][key]): raise ValueError(f"In block_equal not equal:{k}\n") elif v != b.__dict__[k]: raise ValueError(f"In block_equal not equal:{k}\n") return True def program_equal(a, b): for k, v in a.__dict__.items(): if isinstance(v, core.ProgramDesc): continue elif k == 'blocks': for i in range(0, len(a.blocks)): if not block_equal(a.blocks[i], b.blocks[i]): raise ValueError(f"In operator_equal not equal:{k}\n") return False assert len(a.blocks) == len(b.blocks) elif k == '_auto_checkpoint_name': continue elif v != b.__dict__[k]: raise ValueError(f"In program_equal not equal:{k}\n") return True class TestCloneWithStopGradient(unittest.TestCase): def test_clone_with_stop_gradient(self): train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): img = paddle.static.data(name='image', shape=[-1, 784]) hidden1 = paddle.static.nn.fc(x=img, size=200, activation='relu') hidden1.stop_gradient = True hidden2 = paddle.nn.functional.dropout(hidden1, p=0.5) loss = paddle.nn.functional.cross_entropy( input=paddle.static.nn.fc( hidden2, size=10, activation='softmax' ), label=paddle.static.data( name='label', shape=[-1, 1], dtype='int64' ), reduction='none', use_softmax=False, ) avg_loss = paddle.mean(loss) test_program = train_program.clone(for_test=False) self.assertEqual( test_program.block(0).var(hidden1.name).stop_gradient, True ) self.assertEqual( test_program.block(0).var(hidden2.name).stop_gradient, True ) class TestCloneWithStopGradientInSubBlock(unittest.TestCase): def test_clone_with_stop_gradient(self): train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): img = paddle.static.data(name='image', shape=[-1, 784]) true = paddle.ones(shape=[1], dtype="float32") hidden1 = paddle.static.nn.fc(x=img, size=200, activation='relu') hidden1.stop_gradient = True cond = paddle.equal(true, true) def true_fn(): hidden2 = paddle.nn.functional.dropout(hidden1, p=0.5) hidden2.stop_gradient = True return hidden2 def false_fn(): hidden2 = paddle.nn.functional.dropout(hidden1, p=0.6) return hidden2 hidden2 = paddle.static.nn.cond(cond, true_fn, false_fn) loss = paddle.nn.functional.cross_entropy( input=paddle.static.nn.fc( hidden2, size=10, activation='softmax' ), label=paddle.static.data( name='label', shape=[-1, 1], dtype='int64' ), reduction='none', use_softmax=False, ) avg_loss = paddle.mean(loss) test_program = train_program.clone(for_test=False) self.assertEqual( test_program.block(0).var(hidden1.name).stop_gradient, True ) for var in test_program.block(1).vars.values(): var2 = train_program.block(1).var(var.name) self.assertEqual(var.stop_gradient, var2.stop_gradient) for var in test_program.block(2).vars.values(): var2 = train_program.block(2).var(var.name) self.assertEqual(var.stop_gradient, var2.stop_gradient) class TestCloneWithRaise(unittest.TestCase): def test_clone_with_stop_gradient(self): train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): img = paddle.static.data(name='image', shape=[-1, 784]) true = paddle.ones(shape=[1], dtype="float32") hidden1 = paddle.static.nn.fc(x=img, size=200, activation='relu') hidden1.stop_gradient = True cond = paddle.equal(true, true) def true_fn(): hidden2 = paddle.nn.functional.dropout(hidden1, p=0.5) hidden2.stop_gradient = True return hidden2 def false_fn(): hidden2 = paddle.nn.functional.dropout(hidden1, p=0.6) return hidden2 hidden2 = paddle.static.nn.cond(cond, true_fn, false_fn) loss = paddle.nn.functional.cross_entropy( input=paddle.static.nn.fc( hidden2, size=10, activation='softmax' ), label=paddle.static.data( name='label', shape=[-1, 1], dtype='int64' ), reduction='none', use_softmax=False, ) avg_loss = paddle.mean(loss) test_program = train_program.clone(for_test=False) self.assertRaises( ValueError, train_program._copy_data_info_from, startup_program ) self.assertRaises( TypeError, train_program._copy_data_info_from, startup_program.block(0), ) if __name__ == "__main__": unittest.main()