test_desc_clone.py 9.7 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import collections
import functools
import unittest

G
gongweibao 已提交
19
import paddle
20
from paddle import fluid
G
gongweibao 已提交
21 22 23 24 25
from paddle.fluid import core

SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()
26
paddle.enable_static()
G
gongweibao 已提交
27 28 29 30 31


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
G
gongweibao 已提交
48 49 50 51

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
52 53 54 55
    param_shape = [functools.reduce(lambda a, b: a * b, input_shape[1:], 1)] + [
        SIZE
    ]
    scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5
G
gongweibao 已提交
56

C
Charles-hit 已提交
57 58
    predict = paddle.static.nn.fc(
        x=conv_pool_2,
G
gongweibao 已提交
59
        size=SIZE,
C
Charles-hit 已提交
60 61
        activation="softmax",
        weight_attr=fluid.param_attr.ParamAttr(
62
            initializer=paddle.nn.initializer.Normal(loc=0.0, scale=scale)
63 64
        ),
    )
G
gongweibao 已提交
65 66 67 68 69
    return predict


def get_model(batch_size):
    # Input data
G
GGBond8488 已提交
70 71 72 73
    images = paddle.static.data(
        name='pixel', shape=[-1, 1, 28, 28], dtype=DTYPE
    )
    label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64')
G
gongweibao 已提交
74 75 76

    # Train program
    predict = cnn_model(images)
77 78 79
    cost = paddle.nn.functional.cross_entropy(
        input=predict, label=label, reduction='none', use_softmax=False
    )
80
    avg_cost = paddle.mean(x=cost)
G
gongweibao 已提交
81 82

    # Evaluator
83
    batch_size_tensor = paddle.tensor.create_tensor(dtype='int64')
84
    batch_acc = paddle.static.accuracy(
85 86
        input=predict, label=label, total=batch_size_tensor
    )
G
gongweibao 已提交
87 88 89

    inference_program = fluid.default_main_program().clone()
    # Optimization
90 91 92
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999
    )
G
gongweibao 已提交
93 94

    # Reader
95 96 97 98 99 100
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=batch_size
    )
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=batch_size
    )
G
gongweibao 已提交
101
    opt.minimize(avg_cost)
102 103 104 105 106 107 108 109
    return (
        inference_program,
        avg_cost,
        train_reader,
        test_reader,
        batch_acc,
        predict,
    )
G
gongweibao 已提交
110 111 112


def operator_equal(a, b):
113
    if a.__str__() != b.__str__():
G
gongweibao 已提交
114 115
        raise ValueError("In operator_equal not equal\n")

116
    for k, v in a.__dict__.items():
117
        if isinstance(v, (fluid.framework.Program, fluid.framework.Block)):
G
gongweibao 已提交
118 119 120
            continue

        elif isinstance(v, core.OpDesc):
G
gongweibao 已提交
121
            continue
G
gongweibao 已提交
122 123

        elif isinstance(v, collections.OrderedDict):
124 125
            v0 = sorted(v.items(), key=lambda x: x[0])
            v1 = sorted(b.__dict__[k].items(), key=lambda x: x[0])
G
gongweibao 已提交
126 127

            if v0 != v1:
128
                raise ValueError(f"In operator_equal not equal:{k}\n")
G
gongweibao 已提交
129

130
        elif v != b.__dict__[k]:
131
            raise ValueError(f"In operator_equal not equal:{k}\n")
G
gongweibao 已提交
132 133 134 135 136

    return True


def block_equal(a, b):
137
    for k, v in a.__dict__.items():
138 139
        if isinstance(
            v, (core.ProgramDesc, fluid.framework.Program, core.BlockDesc)
140
        ):
G
gongweibao 已提交
141 142
            continue
        elif k == "ops":
143
            assert len(a.ops) == len(b.ops)
G
gongweibao 已提交
144 145
            for i in range(0, len(a.ops)):
                if not operator_equal(a.ops[i], b.ops[i]):
146
                    raise ValueError(f"In block_equal not equal:{k}\n")
G
gongweibao 已提交
147 148

        elif isinstance(v, collections.OrderedDict):
149
            for key, value in v.items():
M
minqiyang 已提交
150
                if str(value) != str(b.__dict__[k][key]):
151
                    raise ValueError(f"In block_equal not equal:{k}\n")
G
gongweibao 已提交
152

153
        elif v != b.__dict__[k]:
154
            raise ValueError(f"In block_equal not equal:{k}\n")
G
gongweibao 已提交
155 156 157 158 159

    return True


def program_equal(a, b):
160
    for k, v in a.__dict__.items():
G
gongweibao 已提交
161 162 163 164 165 166
        if isinstance(v, core.ProgramDesc):
            continue

        elif k == 'blocks':
            for i in range(0, len(a.blocks)):
                if not block_equal(a.blocks[i], b.blocks[i]):
167
                    raise ValueError(f"In operator_equal not equal:{k}\n")
G
gongweibao 已提交
168
                    return False
169
            assert len(a.blocks) == len(b.blocks)
170 171
        elif k == '_auto_checkpoint_name':
            continue
172
        elif v != b.__dict__[k]:
173
            raise ValueError(f"In program_equal not equal:{k}\n")
G
gongweibao 已提交
174 175 176 177

    return True


178 179 180 181 182
class TestCloneWithStopGradient(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
183
            img = paddle.static.data(name='image', shape=[-1, 784])
C
Charles-hit 已提交
184
            hidden1 = paddle.static.nn.fc(x=img, size=200, activation='relu')
185
            hidden1.stop_gradient = True
C
ccrrong 已提交
186
            hidden2 = paddle.nn.functional.dropout(hidden1, p=0.5)
187
            loss = paddle.nn.functional.cross_entropy(
C
Charles-hit 已提交
188 189 190
                input=paddle.static.nn.fc(
                    hidden2, size=10, activation='softmax'
                ),
G
GGBond8488 已提交
191 192 193
                label=paddle.static.data(
                    name='label', shape=[-1, 1], dtype='int64'
                ),
194 195
                reduction='none',
                use_softmax=False,
196
            )
197
            avg_loss = paddle.mean(loss)
198 199 200
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
201 202
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
203
        self.assertEqual(
204
            test_program.block(0).var(hidden2.name).stop_gradient, True
205
        )
206 207 208 209 210 211 212


class TestCloneWithStopGradientInSubBlock(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
213
            img = paddle.static.data(name='image', shape=[-1, 784])
214
            true = paddle.ones(shape=[1], dtype="float32")
C
Charles-hit 已提交
215
            hidden1 = paddle.static.nn.fc(x=img, size=200, activation='relu')
216 217
            hidden1.stop_gradient = True

218
            cond = paddle.equal(true, true)
219 220

            def true_fn():
C
ccrrong 已提交
221
                hidden2 = paddle.nn.functional.dropout(hidden1, p=0.5)
222 223 224 225
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
C
ccrrong 已提交
226
                hidden2 = paddle.nn.functional.dropout(hidden1, p=0.6)
227 228
                return hidden2

229
            hidden2 = paddle.static.nn.cond(cond, true_fn, false_fn)
230

231
            loss = paddle.nn.functional.cross_entropy(
C
Charles-hit 已提交
232 233 234
                input=paddle.static.nn.fc(
                    hidden2, size=10, activation='softmax'
                ),
G
GGBond8488 已提交
235 236 237
                label=paddle.static.data(
                    name='label', shape=[-1, 1], dtype='int64'
                ),
238 239
                reduction='none',
                use_softmax=False,
240
            )
241
            avg_loss = paddle.mean(loss)
242 243 244
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
245 246
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
247 248 249 250 251 252 253 254 255 256 257 258 259
        for var in test_program.block(1).vars.values():
            var2 = train_program.block(1).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)
        for var in test_program.block(2).vars.values():
            var2 = train_program.block(2).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)


class TestCloneWithRaise(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
260
            img = paddle.static.data(name='image', shape=[-1, 784])
261
            true = paddle.ones(shape=[1], dtype="float32")
C
Charles-hit 已提交
262
            hidden1 = paddle.static.nn.fc(x=img, size=200, activation='relu')
263 264
            hidden1.stop_gradient = True

265
            cond = paddle.equal(true, true)
266 267

            def true_fn():
C
ccrrong 已提交
268
                hidden2 = paddle.nn.functional.dropout(hidden1, p=0.5)
269 270 271 272
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
C
ccrrong 已提交
273
                hidden2 = paddle.nn.functional.dropout(hidden1, p=0.6)
274 275
                return hidden2

276
            hidden2 = paddle.static.nn.cond(cond, true_fn, false_fn)
277
            loss = paddle.nn.functional.cross_entropy(
C
Charles-hit 已提交
278 279 280
                input=paddle.static.nn.fc(
                    hidden2, size=10, activation='softmax'
                ),
G
GGBond8488 已提交
281 282 283
                label=paddle.static.data(
                    name='label', shape=[-1, 1], dtype='int64'
                ),
284 285
                reduction='none',
                use_softmax=False,
286
            )
287
            avg_loss = paddle.mean(loss)
288 289
            test_program = train_program.clone(for_test=False)

290 291 292 293 294 295 296 297
        self.assertRaises(
            ValueError, train_program._copy_data_info_from, startup_program
        )
        self.assertRaises(
            TypeError,
            train_program._copy_data_info_from,
            startup_program.block(0),
        )
298 299


G
gongweibao 已提交
300 301
if __name__ == "__main__":
    unittest.main()