distributed_fused_lamb_op.cu 87.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cmath>
16

17
#include "paddle/fluid/memory/buffer.h"
18
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
19 20
#include "paddle/fluid/operators/optimizers/cast_with_ptr.h"
#include "paddle/fluid/operators/optimizers/distributed_fused_lamb_op.h"
21
#include "paddle/fluid/operators/optimizers/multi_tensor_apply.h"
22 23 24 25
#include "paddle/fluid/operators/tensor_to_string.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/fluid/string/string_helper.h"
26
#include "paddle/phi/core/utils/data_type.h"
27
#include "paddle/phi/kernels/funcs/aligned_vector.h"
28 29 30 31 32 33 34 35

#ifdef __NVCC__
#include "cub/cub.cuh"
#include "math.h"  // NOLINT
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
36

37 38 39 40 41 42 43 44 45 46
#include "math.h"  // NOLINT
namespace cub = hipcub;
#endif

namespace paddle {
namespace operators {

template <typename T>
using MasterT = typename details::MPTypeTrait<T>::Type;

47 48 49 50 51 52 53 54 55 56 57 58
template <typename T>
static void FillZeroWithPtr(T *x, size_t n, gpuStream_t stream) {
  static_assert(!std::is_same<T, void>::value, "T cannot be void.");
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemsetAsync(x, 0, n * sizeof(T), stream));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(x, 0, n * sizeof(T), stream));
#endif
}

template <typename T, int BlockDim, int VecSize>
struct L2NormFunctor {
59 60 61 62 63 64 65
  DEVICE void operator()(int tensor_id,
                         int chunk_id,
                         int offset,
                         int size,
                         const T *x,
                         MasterT<T> *y,
                         int max_chunk_num) const {
66 67 68 69 70 71 72 73 74 75
    using MT = MasterT<T>;
    const T *ptr = x + offset;

    using BlockReduce = cub::BlockReduce<MT, BlockDim>;
    __shared__ typename BlockReduce::TempStorage storage;

    MT square_sum = static_cast<MT>(0);
    int i;
    for (i = threadIdx.x * VecSize; i + VecSize <= size;
         i += (BlockDim * VecSize)) {
76 77
      phi::AlignedVector<T, VecSize> tmp_vec;
      phi::Load(ptr + i, &tmp_vec);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#pragma unroll
      for (int j = 0; j < VecSize; ++j) {
        auto tmp = static_cast<MT>(tmp_vec[j]);
        square_sum += (tmp * tmp);
      }
    }

    for (; i < size; ++i) {
      auto tmp = static_cast<MT>(ptr[i]);
      square_sum += (tmp * tmp);
    }

    square_sum = BlockReduce(storage).Reduce(square_sum, cub::Sum());
    if (threadIdx.x == 0) {
      y[tensor_id * max_chunk_num + chunk_id] = square_sum;
    }
  }
};

97
template <typename InT, typename OutT, int BlockDim>
98 99 100 101 102 103 104 105 106 107 108 109
static __global__ void MultiTensorL2NormReduceAgainCUDAKernel(
    const InT *x, OutT *y, int max_chunk_num) {
  int tensor_id = blockIdx.x;
  x += (tensor_id * max_chunk_num);
  using BlockReduce = cub::BlockReduce<InT, BlockDim>;
  __shared__ typename BlockReduce::TempStorage storage;
  InT sum = static_cast<InT>(0);
  for (int i = threadIdx.x; i < max_chunk_num; i += BlockDim) {
    sum += x[i];
  }
  sum = BlockReduce(storage).Reduce(sum, cub::Sum());
  if (threadIdx.x == 0) {
110
    y[blockIdx.x] = static_cast<OutT>(sum);
111 112 113 114 115 116 117 118 119 120
  }
}

template <typename T>
static int GetChunkedVecSize(const T *ptr, int chunk_size) {
  static_assert(!std::is_same<T, void>::value, "T cannot be void.");

  constexpr int max_load_bits = 128;
  int valid_vec_size = max_load_bits / CHAR_BIT / sizeof(T);
  auto address = reinterpret_cast<uintptr_t>(ptr);
121 122 123
  constexpr int vec8 = alignof(phi::AlignedVector<T, 8>);
  constexpr int vec4 = alignof(phi::AlignedVector<T, 4>);
  constexpr int vec2 = alignof(phi::AlignedVector<T, 2>);
124
  chunk_size *= sizeof(T);
125 126 127 128 129 130 131 132 133 134 135
  if (address % vec8 == 0 && chunk_size % vec8 == 0) {
    return std::min(8, valid_vec_size);
  } else if (address % vec4 == 0 && chunk_size % vec4 == 0) {
    return std::min(4, valid_vec_size);
  } else if (address % vec2 == 0 && chunk_size % vec2 == 0) {
    return std::min(2, valid_vec_size);
  } else {
    return 1;
  }
}

136 137 138 139 140
#define PD_VEC_LAUNCH_KERNEL_CASE(__vec_size, ...) \
  case __vec_size: {                               \
    constexpr int kVecSize = __vec_size;           \
    __VA_ARGS__;                                   \
    break;                                         \
141 142
  }

143 144 145 146 147 148 149 150
#define PD_VEC_LAUNCH_KERNEL(__vec_size, ...)    \
  do {                                           \
    switch (__vec_size) {                        \
      PD_VEC_LAUNCH_KERNEL_CASE(8, __VA_ARGS__); \
      PD_VEC_LAUNCH_KERNEL_CASE(4, __VA_ARGS__); \
      PD_VEC_LAUNCH_KERNEL_CASE(2, __VA_ARGS__); \
      PD_VEC_LAUNCH_KERNEL_CASE(1, __VA_ARGS__); \
    }                                            \
151 152 153
  } while (0)

// TODO(zengjinle): which chunk_size is better?
154 155 156
template <typename InT,
          typename OutT,
          int MaxTensorNumPerLaunch = 160,
157
          int MaxChunkNumPerLaunch = 780>
158
static void MultiTensorL2Norm(const platform::CUDAPlace &place,
159 160 161 162 163
                              gpuStream_t stream,
                              const InT *x,
                              const int *offsets,
                              int n,
                              OutT *y,
164 165 166 167 168
                              int chunk_size = 65536) {
  if (n <= 0) return;

  constexpr int kNumTensor = MaxTensorNumPerLaunch;
  constexpr int kNumChunk = MaxChunkNumPerLaunch;
169 170 171
#ifdef PADDLE_WITH_HIP
  constexpr int kBlockDim = 256;
#else
172
  constexpr int kBlockDim = 512;
173
#endif
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

  int max_chunk_num = -1;
  int vec_size = 8;
  int total_chunk_num = 0;
  for (int i = 0; i < n; ++i) {
    vec_size = std::min(
        vec_size, GetChunkedVecSize(x + offsets[i] - offsets[0], chunk_size));
    int length = offsets[i + 1] - offsets[i];
    auto tmp_chunk_num = (length + chunk_size - 1) / chunk_size;
    max_chunk_num = std::max(max_chunk_num, tmp_chunk_num);
    total_chunk_num += tmp_chunk_num;
  }

  VLOG(1) << "MultiTensorL2Norm max_chunk_num = " << max_chunk_num
          << " , total_chunk_num = " << total_chunk_num
          << " , tensor_num = " << n;

  using MT = MasterT<InT>;
  memory::Buffer tmp_out(place);
  auto *tmp_out_ptr = tmp_out.Alloc<MT>(n * max_chunk_num);
  FillZeroWithPtr(tmp_out_ptr, n * max_chunk_num, stream);

196 197 198 199 200 201 202 203 204 205 206 207 208 209
#define PD_LAUNCH_MULTI_TENSOR_APPLY_L2_NORM_KERNEL                   \
  do {                                                                \
    using FunctorT = L2NormFunctor<InT, kBlockDim, kVecSize>;         \
    VLOG(10) << __func__ << " " << typeid(InT).name()                 \
             << " VecSize = " << kVecSize;                            \
    MultiTensorApply<FunctorT, kNumTensor, kNumChunk>(FunctorT(),     \
                                                      stream,         \
                                                      offsets,        \
                                                      n,              \
                                                      chunk_size,     \
                                                      kBlockDim,      \
                                                      x,              \
                                                      tmp_out_ptr,    \
                                                      max_chunk_num); \
210 211
  } while (0)

212 213
  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAUNCH_MULTI_TENSOR_APPLY_L2_NORM_KERNEL);
#undef PD_LAUNCH_MULTI_TENSOR_APPLY_L2_NORM_KERNEL
214

215 216
  MultiTensorL2NormReduceAgainCUDAKernel<MT, OutT, kBlockDim>
      <<<n, kBlockDim, 0, stream>>>(tmp_out_ptr, y, max_chunk_num);
217 218
}

219 220
template <int LogLevel>
static void LogParamAndTrustRatioDivSquareNorm(
221 222
    const framework::ExecutionContext &ctx,
    const float *param_square_norm,
223 224 225 226 227 228
    const float *trust_ratio_div_square_norm) {
  if (!VLOG_IS_ON(LogLevel)) return;

  auto tensors = ctx.MultiInput<framework::Tensor>("Param");
  if (tensors.empty()) return;

229 230
  const auto *order = ctx.Input<framework::Tensor>("ParamOrder")->data<int>();

231 232 233 234 235 236 237
  size_t n = tensors.size();
  auto place = tensors[0]->place();

  auto pn_vec = ToVector(param_square_norm, n, place);
  auto tn_vec = ToVector(trust_ratio_div_square_norm, n, place);

  const auto &names = ctx.GetOp().Inputs("Param");
238 239
  for (size_t i = 0; i < n; ++i) {
    auto idx = order[i];
240 241 242 243 244
    VLOG(LogLevel) << "Param " << tensors[idx]->dtype() << " " << names[idx]
                   << " pn = " << pn_vec[i] << " , tn = " << tn_vec[i];
  }
}

L
Leo Chen 已提交
245
static bool IsFinite(const phi::GPUContext &dev_ctx, const float *ptr) {
246 247 248
  auto stream = dev_ctx.stream();
  float cpu_value;
#ifdef PADDLE_WITH_HIP
249 250
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(
      &cpu_value, ptr, sizeof(float), hipMemcpyDeviceToHost, stream));
251 252
  PADDLE_ENFORCE_GPU_SUCCESS(hipStreamSynchronize(stream));
#else
253 254
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(
      &cpu_value, ptr, sizeof(float), cudaMemcpyDeviceToHost, stream));
255 256 257 258 259 260 261 262 263 264 265
  PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#endif
  LOG(INFO) << "NAN_INF indicator value: " << cpu_value;
  return isfinite(cpu_value);
}

template <typename T>
static const T *GetInputTensorPtr(const framework::ExecutionContext &ctx,
                                  const char *in_name,
                                  int64_t *numel = nullptr) {
  const auto *in_tensor = ctx.Input<framework::Tensor>(in_name);
266 267 268
  PADDLE_ENFORCE_NOT_NULL(
      in_tensor,
      platform::errors::InvalidArgument("Input(%s) cannot be NULL.", in_name));
269 270 271 272 273 274 275 276 277 278 279 280
  if (in_tensor->IsInitialized()) {
    if (numel) *numel = in_tensor->numel();
    return in_tensor->data<T>();
  } else {
    if (numel) *numel = 0;
    return nullptr;
  }
}

template <typename T, bool AllowNotExist = false>
static T *GetSameInOutTensorPtr(const framework::ExecutionContext &ctx,
                                const platform::Place &place,
281 282
                                const char *in_name,
                                const char *out_name,
283 284 285
                                int64_t *numel = nullptr) {
  const auto *in_tensor = ctx.Input<framework::Tensor>(in_name);
  if (in_tensor == nullptr || !in_tensor->IsInitialized()) {
286 287
    PADDLE_ENFORCE_EQ(AllowNotExist,
                      true,
288 289 290 291 292 293 294
                      platform::errors::InvalidArgument(
                          "Input(%s) cannot be NULL.", in_name));
    if (numel) *numel = 0;
    return nullptr;
  }

  auto *out_tensor = ctx.Output<framework::Tensor>(out_name);
295 296 297
  PADDLE_ENFORCE_NOT_NULL(
      in_tensor,
      platform::errors::InvalidArgument("Input(%s) cannot be NULL.", in_name));
298 299 300 301 302
  PADDLE_ENFORCE_NOT_NULL(out_tensor,
                          platform::errors::InvalidArgument(
                              "Output(%s) cannot be NULL.", out_name));
  const T *in_data = in_tensor->data<T>();
  T *out_data = out_tensor->mutable_data<T>(place);
303 304
  PADDLE_ENFORCE_EQ(in_data,
                    out_data,
305 306
                    platform::errors::InvalidArgument(
                        "Input(%s) and Output(%s) must be the same Tensor.",
307 308
                        in_name,
                        out_name));
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  if (numel) *numel = out_tensor->numel();
  return out_data;
}

template <typename T>
struct SquareFunctor {
  HOSTDEVICE MasterT<T> operator()(T x) const {
    auto y = static_cast<MasterT<T>>(x);
    return y * y;
  }
};

template <typename T>
struct IsNanInfFunctor {
  HOSTDEVICE bool operator()(T x) const { return !isfinite(x); }
};

struct OrFunctor {
  HOSTDEVICE bool operator()(bool x, bool y) const { return x || y; }
};

struct AndFunctor {
  HOSTDEVICE bool operator()(bool x, bool y) const { return x && y; }
};

S
sneaxiy 已提交
334
template <typename T1, typename T2, int VecSize>
335 336
static __global__ void ScaleCUDAKernel(const T1 *__restrict__ x,
                                       const T2 *__restrict__ scale,
337 338
                                       T1 *__restrict__ y,
                                       int num) {
339 340 341
  static_assert(sizeof(T1) <= sizeof(T2),
                "sizeof(T1) must be not greater than sizeof(T2).");
  T2 s = scale[0];
S
sneaxiy 已提交
342 343 344 345 346

  int i = (threadIdx.x + blockIdx.x * blockDim.x) * VecSize;
  int stride = blockDim.x * gridDim.x * VecSize;

  for (; i + VecSize <= num; i += stride) {
347 348
    phi::AlignedVector<T1, VecSize> x_vec;
    phi::AlignedVector<T1, VecSize> y_vec;
S
sneaxiy 已提交
349

350
    phi::Load(x + i, &x_vec);
S
sneaxiy 已提交
351 352 353 354
#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
      y_vec[j] = static_cast<T1>(static_cast<T2>(x_vec[j]) * s);
    }
355
    phi::Store(y_vec, y + i);
S
sneaxiy 已提交
356 357 358
  }

  for (; i < num; ++i) {
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    y[i] = static_cast<T1>(static_cast<T2>(x[i]) * s);
  }
}

template <typename T>
static __global__ void AddToCUDAKernel(const T *__restrict__ x,
                                       T *__restrict__ y) {
  y[0] += x[0];
}

// If clip before allreduce,
// coeff = global_scale * max_global_grad_norm / (1e-6 + sqrt(square_grad_norm)
// * rescale_grad)
// if coeff >= 1 or coeff is Nan/Inf, scale = 1.0
// else scale = coeff
template <typename T1, typename T2>
static __global__ void CalcGradNormClipBeforeAllReduceScale(
376 377 378 379 380 381
    const T1 *__restrict__ global_scale,
    T1 max_global_grad_norm,
    const T1 *__restrict__ square_grad_norm,
    T1 *__restrict__ out1,
    T2 *__restrict__ out2,
    T1 clip_rescale_grad) {
382
  T1 grad_norm = static_cast<T1>(sqrtf(*square_grad_norm)) * clip_rescale_grad;
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
  T1 scale = global_scale[0] * max_global_grad_norm / (1e-6 + grad_norm);
  bool found_nan_inf = !isfinite(scale);
  if (scale >= 1 || found_nan_inf) {
    scale = static_cast<T1>(1.0);
  }

  if (out1) {
    *out1 = scale;
  }
  if (out2) {
    *out2 = static_cast<T2>(scale);
  }
}

static __global__ void SetNanInfValueCUDAKernelOneFlag(const bool *in_flag_p,
                                                       float *out_p) {
  *out_p = (*in_flag_p) ? __int_as_float(0x7fffffffU) : 0.0f;
}

static __global__ void SetNanInfValueCUDAKernelTwoFlag(const bool *in_flag_p_1,
                                                       const bool *in_flag_p_2,
                                                       float *out_p) {
  *out_p =
      ((*in_flag_p_1) || (*in_flag_p_2)) ? __int_as_float(0x7fffffffU) : 0.0f;
}

409 410
template <typename T, typename GradT, int VecSize>
static __global__ void UpdateLambMomentAndTrustRatioDivCUDAKernel(
411 412
    const T *__restrict__ param_p,
    const GradT *__restrict__ grad_p,
413
    const T *__restrict__ square_grad_norm_p,
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    const T *__restrict__ global_scale,
    const T *__restrict__ beta1pow_p,
    const T *__restrict__ beta2pow_p,
    T *__restrict__ mom1_p,
    T *__restrict__ mom2_p,
    T *__restrict__ trust_ratio_div_p,
    bool *__restrict__ found_inf,
    int64_t *__restrict__ step,
    T weight_decay,
    int weight_decay_end_numel,
    T beta1,
    T beta2,
    T epsilon,
    T max_global_grad_norm,
    int num,
    T rescale_grad) {
430
  T square_grad_norm = *square_grad_norm_p;
431 432 433 434 435 436 437
  bool need_update_found_inf =
      (found_inf && threadIdx.x == 0 && blockIdx.x == 0);
  if (!isfinite(square_grad_norm)) {
    if (need_update_found_inf) *found_inf = true;
    return;
  } else if (need_update_found_inf) {
    *found_inf = false;
438
    ++(*step);
439
  }
440 441 442 443 444 445 446 447 448 449 450 451 452

  T scale = rescale_grad / global_scale[0];
  if (max_global_grad_norm > 0) {
    T clip_scale =
        max_global_grad_norm / (sqrtf(square_grad_norm) * scale + 1e-6);
    if (clip_scale < static_cast<T>(1)) {
      scale *= clip_scale;
    }
  }

  T one_minus_beta1pow = 1 - beta1pow_p[0];
  T one_minus_beta2pow = 1 - beta2pow_p[0];

453 454 455 456
  int i = (threadIdx.x + blockIdx.x * blockDim.x) * VecSize;
  int stride = blockDim.x * gridDim.x * VecSize;

  for (; i + VecSize <= num; i += stride) {
457 458 459 460 461
    phi::AlignedVector<T, VecSize> param_vec;
    phi::AlignedVector<GradT, VecSize> grad_vec;
    phi::AlignedVector<T, VecSize> mom1_vec;
    phi::AlignedVector<T, VecSize> mom2_vec;
    phi::AlignedVector<T, VecSize> trust_ratio_div_vec;
462 463 464

    T cur_weight_decay = (i < weight_decay_end_numel) * weight_decay;
    if (cur_weight_decay != static_cast<T>(0.0)) {
465
      phi::Load(param_p + i, &param_vec);
466 467 468 469 470 471
    } else {
#pragma unroll
      for (int j = 0; j < VecSize; ++j) {
        param_vec[j] = static_cast<T>(0);
      }
    }
472 473 474
    phi::Load(grad_p + i, &grad_vec);
    phi::Load(mom1_p + i, &mom1_vec);
    phi::Load(mom2_p + i, &mom2_vec);
475

476 477
#define PD_LAMB_MOM_TRUST_RATIO_DIV_UPDATE(                                    \
    __param, __grad, __mom1, __mom2, __trust_ratio_div, __idx)                 \
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
  T p = __param[__idx];                                                        \
  T g = static_cast<T>(__grad[__idx]) * scale;                                 \
  T mom1 = __mom1[__idx];                                                      \
  T mom2 = __mom2[__idx];                                                      \
  mom1 = beta1 * mom1 + (1 - beta1) * g;                                       \
  mom2 = beta2 * mom2 + (1 - beta2) * g * g;                                   \
  T mom1_unbiased = mom1 / one_minus_beta1pow;                                 \
  T mom2_unbiased = mom2 / one_minus_beta2pow;                                 \
  __trust_ratio_div[__idx] =                                                   \
      mom1_unbiased / (sqrtf(mom2_unbiased) + epsilon) + cur_weight_decay * p; \
  __mom1[__idx] = mom1;                                                        \
  __mom2[__idx] = mom2;

#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
493 494
      PD_LAMB_MOM_TRUST_RATIO_DIV_UPDATE(
          param_vec, grad_vec, mom1_vec, mom2_vec, trust_ratio_div_vec, j);
495 496
    }

497 498 499
    phi::Store(mom1_vec, mom1_p + i);
    phi::Store(mom2_vec, mom2_p + i);
    phi::Store(trust_ratio_div_vec, trust_ratio_div_p + i);
500 501 502 503
  }

  for (; i < num; ++i) {
    T cur_weight_decay = (i < weight_decay_end_numel) * weight_decay;
504 505
    PD_LAMB_MOM_TRUST_RATIO_DIV_UPDATE(
        param_p, grad_p, mom1_p, mom2_p, trust_ratio_div_p, i);
506 507 508
  }
}

509 510
template <typename T, typename GradT>
static void MultiTensorUpdateLambMomentAndTrustRatioDiv(
L
Leo Chen 已提交
511
    const phi::GPUContext &dev_ctx,
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    const int *offsets,
    int n,
    const T *param_p,
    const GradT *grad_p,
    const T *square_grad_norm_p,
    const T *global_scale,
    const T *beta1pow_p,
    const T *beta2pow_p,
    T *mom1_p,
    T *mom2_p,
    T *trust_ratio_div_p,
    bool *found_inf_p,
    int64_t *step,
    T weight_decay,
    int weight_decay_end_idx,
    T beta1,
    T beta2,
    T epsilon,
    T max_global_grad_norm,
    T rescale_grad) {
532 533
  if (n <= 0) return;
  int numel = offsets[n] - offsets[0];
534 535
  PADDLE_ENFORCE_GE(weight_decay_end_idx,
                    0,
536 537
                    platform::errors::InvalidArgument(
                        "The weight decay end index should be >= 0."));
538 539
  PADDLE_ENFORCE_LE(weight_decay_end_idx,
                    n,
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
                    platform::errors::InvalidArgument(
                        "The weight decay end index should be < %d.", n));
  auto weight_decay_end_numel = offsets[weight_decay_end_idx] - offsets[0];

  int vec_size = GetChunkedVecSize(param_p, 0);
  vec_size = std::min(vec_size, GetChunkedVecSize(grad_p, 0));
  vec_size = std::min(vec_size, GetChunkedVecSize(mom1_p, 0));
  vec_size = std::min(vec_size, GetChunkedVecSize(mom2_p, 0));
  vec_size = std::min(vec_size, GetChunkedVecSize(trust_ratio_div_p, 0));
  for (int i = 0; i < n; ++i) {
    auto length = offsets[i + 1] - offsets[i];
    while (length % vec_size != 0) {
      vec_size /= 2;
    }
  }

  VLOG(1) << __func__ << " VecSize = " << vec_size;

  auto stream = dev_ctx.stream();
  auto config = platform::GetGpuLaunchConfig1D(dev_ctx, numel, vec_size);
560 561
  if (found_inf_p == nullptr) {
    PADDLE_ENFORCE_EQ(
562 563
        step,
        nullptr,
564 565 566
        platform::errors::InvalidArgument(
            "Output(Step) cannot be updated twice in one mini-batch."));
  } else {
567 568 569
    PADDLE_ENFORCE_NOT_NULL(
        step,
        platform::errors::InvalidArgument("Output(Step) cannot be nullptr."));
570
  }
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
#define PD_LAUNCH_LAMB_MOM_TRUST_RATIO_DIV_KERNEL                        \
  do {                                                                   \
    UpdateLambMomentAndTrustRatioDivCUDAKernel<T, GradT, kVecSize>       \
        <<<config.block_per_grid, config.thread_per_block, 0, stream>>>( \
            param_p,                                                     \
            grad_p,                                                      \
            square_grad_norm_p,                                          \
            global_scale,                                                \
            beta1pow_p,                                                  \
            beta2pow_p,                                                  \
            mom1_p,                                                      \
            mom2_p,                                                      \
            trust_ratio_div_p,                                           \
            found_inf_p,                                                 \
            step,                                                        \
            weight_decay,                                                \
            weight_decay_end_numel,                                      \
            beta1,                                                       \
            beta2,                                                       \
            epsilon,                                                     \
            max_global_grad_norm,                                        \
            numel,                                                       \
            rescale_grad);                                               \
595 596 597 598 599 600
  } while (0)

  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAUNCH_LAMB_MOM_TRUST_RATIO_DIV_KERNEL);
#undef PD_LAUNCH_LAMB_MOM_TRUST_RATIO_DIV_KERNEL
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
template <typename T, bool NeedUpdate /*=true*/>
struct LambBetaPowUpdateOnceHelper {
  LambBetaPowUpdateOnceHelper(T *beta1pow, T *beta2pow, T beta1, T beta2) {
    PADDLE_ENFORCE_NOT_NULL(beta1pow,
                            platform::errors::InvalidArgument(
                                "The beta1pow should not be nullptr."));
    PADDLE_ENFORCE_NOT_NULL(beta2pow,
                            platform::errors::InvalidArgument(
                                "The beta2pow should not be nullptr."));
    beta1pow_ = beta1pow;
    beta2pow_ = beta2pow;
    beta1_ = beta1;
    beta2_ = beta2;
  }

  HOSTDEVICE void UpdateBetaPows() const {
    beta1pow_[0] *= beta1_;
    beta2pow_[0] *= beta2_;
  }

 private:
  T *__restrict__ beta1pow_;
  T *__restrict__ beta2pow_;
  T beta1_;
  T beta2_;
};

template <typename T>
struct LambBetaPowUpdateOnceHelper<T, false> {
  LambBetaPowUpdateOnceHelper(T *beta1pow, T *beta2pow, T beta1, T beta2) {
    PADDLE_ENFORCE_EQ(
632 633
        beta1pow,
        nullptr,
634 635
        platform::errors::InvalidArgument("The beta1pow should be nullptr."));
    PADDLE_ENFORCE_EQ(
636 637
        beta2pow,
        nullptr,
638 639 640 641 642 643 644 645 646 647
        platform::errors::InvalidArgument("The beta2pow should be nullptr."));
  }

  HOSTDEVICE void UpdateBetaPows() const {}
};

template <typename T, bool HasMasterParam /*=true*/>
struct LambParamHelper {
  LambParamHelper(T *param, MasterT<T> *master_param) {
    constexpr bool kIsSameType = std::is_same<T, MasterT<T>>::value;
648 649
    PADDLE_ENFORCE_EQ(kIsSameType,
                      false,
650 651 652 653 654 655 656 657 658
                      platform::errors::InvalidArgument(
                          "T must not be the same with MasterT<T>."));
    PADDLE_ENFORCE_NOT_NULL(master_param,
                            platform::errors::InvalidArgument(
                                "Master parameter must be provided."));
    param_ = param;
    master_param_ = master_param;
  }

659
  HOSTDEVICE T *__restrict__ ParamPtr() { return param_; }
660

661
  HOSTDEVICE MasterT<T> *__restrict__ MasterParamPtr() { return master_param_; }
662 663 664 665 666 667 668 669 670 671

 private:
  T *__restrict__ param_;
  MasterT<T> *__restrict__ master_param_;
};

template <typename T>
struct LambParamHelper<T, false> {
  LambParamHelper(T *param, MasterT<T> *master_param) {
    constexpr bool kIsSameType = std::is_same<T, MasterT<T>>::value;
672 673
    PADDLE_ENFORCE_EQ(kIsSameType,
                      true,
674 675 676 677 678 679 680 681 682 683 684 685
                      platform::errors::InvalidArgument(
                          "T must be the same with MasterT<T>."));
    if (master_param != nullptr) {
      PADDLE_ENFORCE_EQ(static_cast<void *>(param),
                        static_cast<void *>(master_param),
                        platform::errors::InvalidArgument(
                            "Master parameter must be nullptr or the same as "
                            "non-master parameter."));
    }
    param_ = param;
  }

686
  HOSTDEVICE T *__restrict__ ParamPtr() { return param_; }
687

688
  HOSTDEVICE constexpr MasterT<T> *MasterParamPtr() { return nullptr; }
689 690 691 692 693

 private:
  T *__restrict__ param_;
};

694 695 696
template <typename ParamT,
          bool HasMasterParam,
          bool NeedUpdateBetaPow,
697 698 699
          int VecSize>
struct LambUpdateParamAndBetaPowsFunctor {
  DEVICE void operator()(
700 701 702 703
      int tensor_id,
      int chunk_id,
      int offset,
      int size,
704
      LambParamHelper<ParamT, HasMasterParam> param_helper,
705 706
      const MasterT<ParamT> *trust_ratio_div,
      const MasterT<ParamT> *lr,
707
      const MasterT<ParamT> *param_square_norm,
708 709
      const MasterT<ParamT> *trust_ratio_div_square_norm,
      const bool *found_inf,
710 711 712 713 714
      LambBetaPowUpdateOnceHelper<MasterT<ParamT>, NeedUpdateBetaPow>
          betapow_helper) const {
    if (*found_inf) return;

    using MT = MasterT<ParamT>;
715

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    MT p_square_norm = param_square_norm[tensor_id];
    MT t_square_norm = trust_ratio_div_square_norm[tensor_id];
    MT lr_value = *lr;
    MT ratio = (p_square_norm != static_cast<MT>(0) &&
                        t_square_norm != static_cast<MT>(0)
                    ? lr_value * sqrtf(p_square_norm / t_square_norm)
                    : lr_value);

    int i;
    int stride = blockDim.x * VecSize;

    ParamT *param = param_helper.ParamPtr() + offset;
    MT *master_param = HasMasterParam ? param_helper.MasterParamPtr() + offset
                                      : param_helper.MasterParamPtr();
    trust_ratio_div += offset;

    for (i = threadIdx.x * VecSize; i + VecSize <= size; i += stride) {
733 734
      phi::AlignedVector<MT, VecSize> trust_ratio_div_vec;
      phi::Load(trust_ratio_div + i, &trust_ratio_div_vec);
735
      if (HasMasterParam) {
736 737 738
        phi::AlignedVector<MT, VecSize> master_param_vec;
        phi::Load(master_param + i, &master_param_vec);
        phi::AlignedVector<ParamT, VecSize> param_vec;
739 740 741 742 743 744
#pragma unroll
        for (int j = 0; j < VecSize; ++j) {
          MT p = master_param_vec[j] - ratio * trust_ratio_div_vec[j];
          master_param_vec[j] = p;
          param_vec[j] = static_cast<ParamT>(p);
        }
745 746
        phi::Store(master_param_vec, master_param + i);
        phi::Store(param_vec, param + i);
747
      } else {
748 749
        phi::AlignedVector<ParamT, VecSize> param_vec;
        phi::Load(param + i, &param_vec);
750 751 752 753 754
#pragma unroll
        for (int j = 0; j < VecSize; ++j) {
          MT p = static_cast<MT>(param_vec[j]) - ratio * trust_ratio_div_vec[j];
          param_vec[j] = static_cast<ParamT>(p);
        }
755
        phi::Store(param_vec, param + i);
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
      }
    }

    for (; i < size; ++i) {
      if (HasMasterParam) {
        MT p = master_param[i] - ratio * trust_ratio_div[i];
        master_param[i] = p;
        param[i] = static_cast<ParamT>(p);
      } else {
        MT p = static_cast<MT>(param[i]) - ratio * trust_ratio_div[i];
        param[i] = static_cast<ParamT>(p);
      }
    }

    if (NeedUpdateBetaPow && threadIdx.x == 0 && blockIdx.x == 0) {
      betapow_helper.UpdateBetaPows();
772 773
    }
  }
774
};
775

776
// TODO(zengjinle): which block_dim and chunk_size would be better?
777 778
template <typename ParamT,
          int MaxTensorNumPerLaunch = 160,
779 780
          int MaxChunkNumPerLaunch = 780>
static void MultiTensorUpdateLambParamAndBetaPows(
L
Leo Chen 已提交
781
    const phi::GPUContext &dev_ctx,
782 783 784 785
    const int *offsets,
    int n,
    const MasterT<ParamT> *trust_ratio_div,
    const MasterT<ParamT> *lr,
786
    const MasterT<ParamT> *param_square_norm,
787 788 789 790 791 792 793 794
    const MasterT<ParamT> *trust_ratio_div_square_norm,
    const bool *found_inf,
    ParamT *param,
    MasterT<ParamT> *master_param,
    MasterT<ParamT> *beta1pow,
    MasterT<ParamT> *beta2pow,
    MasterT<ParamT> beta1,
    MasterT<ParamT> beta2,
795 796 797 798 799 800
    int chunk_size = 65536) {
  constexpr bool kHasMasterParam =
      !(std::is_same<ParamT, MasterT<ParamT>>::value);

  bool has_beta_pow = (beta1pow != nullptr);
  if (has_beta_pow) {
801 802 803
    PADDLE_ENFORCE_NOT_NULL(
        beta2pow,
        platform::errors::InvalidArgument("Beta2Pow should not be nullptr."));
804
  } else {
805
    PADDLE_ENFORCE_EQ(
806 807
        beta2pow,
        nullptr,
808
        platform::errors::InvalidArgument("Beta2Pow should be nullptr."));
809 810
  }

811 812 813
#ifdef PADDLE_WITH_HIP
  const int block_dim = 256;
#else
814
  const int block_dim = 512;
815
#endif
816

817 818 819 820 821 822 823 824 825 826 827 828
  int vec_size = 8;
  for (int i = 0; i < n; ++i) {
    int offset = offsets[i] - offsets[0];
    vec_size =
        std::min(vec_size, GetChunkedVecSize(param + offset, chunk_size));
    if (kHasMasterParam) {
      vec_size = std::min(vec_size,
                          GetChunkedVecSize(master_param + offset, chunk_size));
    }
    vec_size = std::min(
        vec_size, GetChunkedVecSize(trust_ratio_div + offset, chunk_size));
  }
829

830
  VLOG(1) << __func__ << " VecSize = " << vec_size;
831

832 833
  constexpr auto kNumTensor = MaxTensorNumPerLaunch;
  constexpr auto kNumChunk = MaxChunkNumPerLaunch;
834

835
  auto stream = dev_ctx.stream();
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
#define PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW(__has_beta_pow)      \
  do {                                                                   \
    using FunctorT = LambUpdateParamAndBetaPowsFunctor<ParamT,           \
                                                       kHasMasterParam,  \
                                                       __has_beta_pow,   \
                                                       kVecSize>;        \
    LambParamHelper<ParamT, kHasMasterParam> param_helper(param,         \
                                                          master_param); \
    LambBetaPowUpdateOnceHelper<MasterT<ParamT>, __has_beta_pow>         \
        betapow_helper(beta1pow, beta2pow, beta1, beta2);                \
    launcher.Launch(FunctorT(),                                          \
                    param_helper,                                        \
                    trust_ratio_div,                                     \
                    lr,                                                  \
                    param_square_norm,                                   \
                    trust_ratio_div_square_norm,                         \
                    found_inf,                                           \
                    betapow_helper);                                     \
854
  } while (0)
855

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
#define PD_LAUNCH_VEC_MULTI_TENSOR_UPDATE_PARAM_BETAPOW_CASE            \
  do {                                                                  \
    auto callback =                                                     \
        [&](const MultiTensorLauncher<kNumTensor, kNumChunk> &launcher, \
            int launch_n) {                                             \
          if (has_beta_pow && launch_n == 0) {                          \
            PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW(true);          \
            beta1pow = nullptr;                                         \
            beta2pow = nullptr;                                         \
          } else {                                                      \
            PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW(false);         \
          }                                                             \
        };                                                              \
    MultiTensorApplyWithCallback<kNumTensor, kNumChunk>(                \
        stream, offsets, n, chunk_size, block_dim, callback);           \
871 872
  } while (0)

873 874
  PD_VEC_LAUNCH_KERNEL(vec_size,
                       PD_LAUNCH_VEC_MULTI_TENSOR_UPDATE_PARAM_BETAPOW_CASE);
875

876 877
#undef PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW
#undef PD_LAUNCH_VEC_MULTI_TENSOR_UPDATE_PARAM_BETAPOW_CASE
878 879 880 881
}

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
static bool CreatePreMulScaleOpIfSupported(ncclDataType_t dtype,
882 883
                                           ncclComm_t comm,
                                           const void *scale,
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
                                           ncclRedOp_t *op) {
#if NCCL_VERSION_CODE >= 21100
  int ver;
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  if (ver >= 21100) {
    VLOG(10) << "ncclRedOpCreatePreMulSum is supported.";
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRedOpCreatePreMulSum(
        op, const_cast<void *>(scale), dtype, ncclScalarDevice, comm));
    return true;
  }
#endif
  VLOG(10) << "ncclRedOpCreatePreMulSum is not supported.";
  return false;
}

S
sneaxiy 已提交
899
template <typename T1, typename T2>
L
Leo Chen 已提交
900
static void LaunchScaleKernel(const phi::GPUContext &dev_ctx,
901 902 903 904
                              const T1 *x,
                              const T2 *scale,
                              T1 *y,
                              int n,
S
sneaxiy 已提交
905 906 907 908
                              gpuStream_t stream) {
  int vec_size = std::min(GetChunkedVecSize(x, 0), GetChunkedVecSize(y, 0));
  auto config = platform::GetGpuLaunchConfig1D(dev_ctx, n, vec_size);

909 910 911 912 913
#define PD_LAMB_VEC_SCALE_KERNEL_CASE                                    \
  do {                                                                   \
    ScaleCUDAKernel<T1, T2, kVecSize>                                    \
        <<<config.block_per_grid, config.thread_per_block, 0, stream>>>( \
            x, scale, y, n);                                             \
S
sneaxiy 已提交
914 915 916 917 918 919
  } while (0)

  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAMB_VEC_SCALE_KERNEL_CASE);
#undef PD_LAMB_VEC_SCALE_KERNEL_CASE
}

920
template <typename T, bool UseReduceScatter>
921 922 923 924 925 926
static void NCCLSumWithScaleBase(const T *sendbuff,
                                 T *recvbuff,
                                 size_t recvcount,
                                 size_t nranks,
                                 ncclComm_t comm,
                                 gpuStream_t stream,
L
Leo Chen 已提交
927
                                 const phi::GPUContext &dev_ctx,
928
                                 const T *scale = nullptr) {
929 930 931 932 933
  static_assert(std::is_same<T, float>::value ||
                    std::is_same<T, platform::float16>::value,
                "T must be either float32 or float16.");
  if (recvcount == 0) return;

934
  auto numel = UseReduceScatter ? (recvcount * nranks) : recvcount;
935 936
  if (comm == nullptr) {
    if (scale != nullptr) {
937 938
      PADDLE_ENFORCE_EQ(nranks,
                        1,
939 940
                        platform::errors::InvalidArgument(
                            "nranks must be 1 when scale != nullptr."));
941
      LaunchScaleKernel(dev_ctx, sendbuff, scale, recvbuff, numel, stream);
942 943 944 945 946 947 948 949 950 951 952 953
    }
    return;
  }

  ncclRedOp_t op = ncclSum;
  ncclDataType_t dtype =
      std::is_same<T, float>::value ? ncclFloat32 : ncclFloat16;
  bool should_destroy_op =
      scale && CreatePreMulScaleOpIfSupported(dtype, comm, scale, &op);
  memory::Buffer buffer(dev_ctx.GetPlace());
  if (scale && !should_destroy_op) {
    T *new_sendbuff = buffer.Alloc<T>(numel);
S
sneaxiy 已提交
954
    LaunchScaleKernel(dev_ctx, sendbuff, scale, new_sendbuff, numel, stream);
955 956 957
    sendbuff = new_sendbuff;
  }

958 959 960 961 962 963 964
  if (UseReduceScatter) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
        sendbuff, recvbuff, recvcount, dtype, op, comm, stream));
  } else {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
        sendbuff, recvbuff, recvcount, dtype, op, comm, stream));
  }
965 966 967 968 969 970 971 972 973

#if NCCL_VERSION_CODE >= 21100
  if (should_destroy_op) {
    VLOG(10) << "ncclRedOpDestroy starts";
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRedOpDestroy(op, comm));
    VLOG(10) << "ncclRedOpDestroy ends";
  }
#endif
}
974 975

template <typename T>
L
Leo Chen 已提交
976 977 978 979 980 981 982 983
static void NCCLReduceScatterWithScale(const T *sendbuff,
                                       T *recvbuff,
                                       size_t recvcount,
                                       size_t nranks,
                                       ncclComm_t comm,
                                       gpuStream_t stream,
                                       const phi::GPUContext &dev_ctx,
                                       const T *scale = nullptr) {
984 985
  NCCLSumWithScaleBase<T, true>(
      sendbuff, recvbuff, recvcount, nranks, comm, stream, dev_ctx, scale);
986 987 988
}

template <typename T>
989 990 991 992 993 994
static void NCCLAllReduceWithScale(const T *sendbuff,
                                   T *recvbuff,
                                   size_t recvcount,
                                   size_t nranks,
                                   ncclComm_t comm,
                                   gpuStream_t stream,
L
Leo Chen 已提交
995
                                   const phi::GPUContext &dev_ctx,
996
                                   const T *scale = nullptr) {
997 998
  NCCLSumWithScaleBase<T, false>(
      sendbuff, recvbuff, recvcount, nranks, comm, stream, dev_ctx, scale);
999 1000
}

1001 1002
#endif

1003 1004 1005
template <typename InputIteratorT,
          typename OutputIteratorT,
          typename ReduceOpT,
1006
          typename T>
1007 1008 1009 1010 1011 1012 1013
static void CubDeviceReduce(InputIteratorT d_in,
                            OutputIteratorT d_out,
                            int num_items,
                            ReduceOpT reduction_op,
                            T init,
                            gpuStream_t stream,
                            memory::Buffer *buffer) {
1014 1015
  void *d_temp_storage = nullptr;
  size_t temp_storage_bytes = 0;
1016 1017 1018 1019 1020 1021 1022 1023
  PADDLE_ENFORCE_GPU_SUCCESS(cub::DeviceReduce::Reduce(d_temp_storage,
                                                       temp_storage_bytes,
                                                       d_in,
                                                       d_out,
                                                       num_items,
                                                       reduction_op,
                                                       init,
                                                       stream));
1024 1025 1026
  d_temp_storage = buffer->Alloc<void>(temp_storage_bytes);
  VLOG(10) << "cub::DeviceReduce::Reduce needs " << temp_storage_bytes
           << " byte(s), ptr = " << d_temp_storage;
1027 1028 1029 1030 1031 1032 1033 1034
  PADDLE_ENFORCE_GPU_SUCCESS(cub::DeviceReduce::Reduce(d_temp_storage,
                                                       temp_storage_bytes,
                                                       d_in,
                                                       d_out,
                                                       num_items,
                                                       reduction_op,
                                                       init,
                                                       stream));
1035 1036 1037
}

template <typename T>
1038 1039 1040
static void GetSquareGradNormImpl(const T *grad,
                                  int n,
                                  float *square_norm,
1041 1042 1043 1044 1045
                                  gpuStream_t stream,
                                  memory::Buffer *cub_tmp_buffer) {
  using Iterator =
      cub::TransformInputIterator<float, SquareFunctor<T>, const T *>;
  Iterator iter(grad, SquareFunctor<T>());
1046 1047 1048 1049 1050 1051 1052
  CubDeviceReduce(iter,
                  square_norm,
                  n,
                  cub::Sum(),
                  static_cast<float>(0),
                  stream,
                  cub_tmp_buffer);
1053 1054 1055
}

// square_norm is of length 2 at least
1056 1057
static void GetSquareGradNorm(const float *fp32_grad,
                              int fp32_numel,
1058
                              const platform::float16 *fp16_grad,
1059 1060
                              int fp16_numel,
                              float *square_norm,
1061 1062 1063 1064 1065
                              gpuStream_t stream,
                              memory::Buffer *cub_tmp_buffer) {
  VLOG(10) << "GetSquareGradNorm starts, fp32_numel = " << fp32_numel
           << " , fp16_numel = " << fp16_numel;
  if (fp32_numel > 0) {
1066 1067
    GetSquareGradNormImpl(
        fp32_grad, fp32_numel, square_norm, stream, cub_tmp_buffer);
1068 1069 1070 1071 1072 1073
    VLOG(10) << "FP32 square L2-Norm: "
             << FlattenToString(square_norm, 1, cub_tmp_buffer->GetPlace());
  }

  if (fp16_numel > 0) {
    float *fp16_square_norm = fp32_numel > 0 ? square_norm + 1 : square_norm;
1074 1075
    GetSquareGradNormImpl(
        fp16_grad, fp16_numel, fp16_square_norm, stream, cub_tmp_buffer);
1076
    VLOG(10) << "FP16 square L2-Norm: "
1077 1078
             << FlattenToString(
                    fp16_square_norm, 1, cub_tmp_buffer->GetPlace());
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
    if (fp32_numel > 0) {
      AddToCUDAKernel<<<1, 1, 0, stream>>>(fp16_square_norm, square_norm);
      VLOG(10) << "FP32+FP16 square L2-Norm: "
               << FlattenToString(square_norm, 1, cub_tmp_buffer->GetPlace());
    }
  }
  VLOG(10) << "GetSquareGradNorm ends, fp32_numel = " << fp32_numel
           << " , fp16_numel = " << fp16_numel;
}

template <typename T>
std::string NumToString(T x) {
  std::stringstream ss;
  ss << x;
  return ss.str();
}

template <typename T>
1097 1098
static std::string GetMinMaxStr(const T *x,
                                size_t n,
1099 1100
                                const platform::Place &place) {
  PADDLE_ENFORCE_EQ(
1101 1102
      platform::is_gpu_place(place),
      true,
1103 1104
      platform::errors::InvalidArgument("Only support CUDAPlace currently."));

L
Leo Chen 已提交
1105
  auto *dev_ctx = static_cast<phi::GPUContext *>(
1106 1107 1108 1109 1110 1111 1112 1113
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  memory::Buffer ret_buffer(place);
  T *ret = ret_buffer.Alloc<T>(2);

  if (n > 0) {
    memory::Buffer cub_buffer(place);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    CubDeviceReduce(x,
                    ret,
                    n,
                    cub::Min(),
                    std::numeric_limits<T>::max(),
                    stream,
                    &cub_buffer);
    CubDeviceReduce(x,
                    ret + 1,
                    n,
                    cub::Max(),
                    std::numeric_limits<T>::lowest(),
                    stream,
                    &cub_buffer);
1128 1129
    T ret_cpu[2];
#ifdef PADDLE_WITH_HIP
1130 1131
    PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(
        &ret_cpu[0], ret, 2 * sizeof(T), hipMemcpyDeviceToHost, stream));
1132 1133
    PADDLE_ENFORCE_GPU_SUCCESS(hipStreamSynchronize(stream));
#else
1134 1135
    PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(
        &ret_cpu[0], ret, 2 * sizeof(T), cudaMemcpyDeviceToHost, stream));
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#endif
    return std::string("{\"min\": ") + NumToString(ret_cpu[0]) +
           " , \"max\": " + NumToString(ret_cpu[1]) + "}";
  } else {
    return "{\"min\": null, \"max\": null}";
  }
}

struct VisitDTypeFunctor {
  VisitDTypeFunctor(const framework::Tensor *x, std::string *s)
      : x_(x), s_(s) {}

  template <typename T>
  void apply() const {
    *s_ = GetMinMaxStr<T>(x_->template data<T>(), x_->numel(), x_->place());
  }

 private:
  const framework::Tensor *x_;
  std::string *s_;
};

static std::string GetMinMaxStr(const framework::Tensor *x) {
  if (x == nullptr) return "null";
  if (!x->IsInitialized()) return "not_inited";
  if (!platform::is_gpu_place(x->place())) return "CPUTensor";
  std::string str;
  VisitDTypeFunctor functor(x, &str);
1165
  phi::VisitDataType(x->dtype(), functor);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
  return str;
}

static void PrintAllMinMaxRange(const framework::ExecutionContext &ctx,
                                bool only_inputs) {
  if (!VLOG_IS_ON(1)) return;
  for (const auto &pair : ctx.GetOp().Inputs()) {
    const auto &key = pair.first;
    const auto tensors = ctx.MultiInput<framework::Tensor>(key);
    size_t n = tensors.size();
    for (size_t i = 0; i < n; ++i) {
      VLOG(1) << "Input(" << key + ")[" << i << "] = " << pair.second[i]
              << " , " << GetMinMaxStr(tensors[i]);
    }
  }

  if (only_inputs) return;
  for (const auto &pair : ctx.GetOp().Outputs()) {
    const auto &key = pair.first;
    const auto tensors = ctx.MultiOutput<framework::Tensor>(key);
    size_t n = tensors.size();
    for (size_t i = 0; i < n; ++i) {
      VLOG(1) << "Output(" << key + ")[" << i << "] = " << pair.second[i]
              << " , " << GetMinMaxStr(tensors[i]);
    }
  }
}

1194 1195
static void CheckHasNanInfGrad(const float *fp32_grad,
                               int fp32_numel,
1196
                               const platform::float16 *fp16_grad,
1197 1198
                               int fp16_numel,
                               float *nan_inf_flag,
1199 1200 1201 1202 1203 1204 1205
                               gpuStream_t stream,
                               memory::Buffer *cub_tmp_buffer) {
  bool *fp32_has_nan_inf = nullptr;
  bool *fp16_has_nan_inf = nullptr;
  if (fp32_numel > 0) {
    fp32_has_nan_inf = reinterpret_cast<bool *>(nan_inf_flag + 1);
    cub::TransformInputIterator<bool, IsNanInfFunctor<float>, const float *>
1206
        iter(fp32_grad, IsNanInfFunctor<float>());
1207 1208 1209 1210 1211 1212 1213
    CubDeviceReduce(iter,
                    fp32_has_nan_inf,
                    fp32_numel,
                    OrFunctor(),
                    false,
                    stream,
                    cub_tmp_buffer);
1214 1215 1216 1217
  }

  if (fp16_numel > 0) {
    fp16_has_nan_inf = reinterpret_cast<bool *>(nan_inf_flag + 1) + 1;
1218 1219
    cub::TransformInputIterator<bool,
                                IsNanInfFunctor<platform::float16>,
1220 1221
                                const platform::float16 *>
        iter(fp16_grad, IsNanInfFunctor<platform::float16>());
1222 1223 1224 1225 1226 1227 1228
    CubDeviceReduce(iter,
                    fp16_has_nan_inf,
                    fp16_numel,
                    OrFunctor(),
                    false,
                    stream,
                    cub_tmp_buffer);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
  }

  if (fp32_has_nan_inf && fp16_has_nan_inf) {
    SetNanInfValueCUDAKernelTwoFlag<<<1, 1, 0, stream>>>(
        fp32_has_nan_inf, fp16_has_nan_inf, nan_inf_flag);
  } else if (fp32_has_nan_inf) {
    SetNanInfValueCUDAKernelOneFlag<<<1, 1, 0, stream>>>(fp32_has_nan_inf,
                                                         nan_inf_flag);
  } else {
    SetNanInfValueCUDAKernelOneFlag<<<1, 1, 0, stream>>>(fp16_has_nan_inf,
                                                         nan_inf_flag);
  }
}

1243 1244
template <typename T1, typename T2, typename T3, int VecSize>
static __global__ void ElementwiseAddWithCastCUDAKernel(const T1 *x,
1245 1246
                                                        const T2 *y,
                                                        T3 *z,
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
                                                        int n) {
  static_assert(sizeof(T1) <= sizeof(T2),
                "sizeof(T1) must be smaller than sizeof(T2).");
  using MT = MasterT<T2>;

  int i = (threadIdx.x + blockIdx.x * blockDim.x) * VecSize;
  int stride = (blockDim.x * gridDim.x) * VecSize;
  for (; i + VecSize <= n; i += stride) {
    phi::AlignedVector<T1, VecSize> x_vec;
    phi::AlignedVector<T2, VecSize> y_vec;
    phi::AlignedVector<T3, VecSize> z_vec;
    phi::Load(x + i, &x_vec);
    phi::Load(y + i, &y_vec);
#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
      auto x_tmp = static_cast<MT>(x_vec[j]);
      auto y_tmp = static_cast<MT>(y_vec[j]);
      z_vec[j] = static_cast<T3>(x_tmp + y_tmp);
    }
    phi::Store(z_vec, z + i);
  }

  for (; i < n; ++i) {
    auto x_tmp = static_cast<MT>(x[i]);
    auto y_tmp = static_cast<MT>(y[i]);
    z[i] = static_cast<T3>(x_tmp + y_tmp);
  }
}

template <typename T1, typename T2, typename T3>
L
Leo Chen 已提交
1277 1278 1279 1280 1281 1282
static void LaunchElementwiseAddWithCastKernel(const phi::GPUContext &dev_ctx,
                                               const T1 *x,
                                               const T2 *y,
                                               T3 *z,
                                               int n,
                                               gpuStream_t stream) {
1283 1284 1285 1286 1287
  int vec_size =
      std::min(std::min(GetChunkedVecSize(x, 0), GetChunkedVecSize(y, 0)),
               GetChunkedVecSize(z, 0));
  auto config = platform::GetGpuLaunchConfig1D(dev_ctx, n, vec_size);

1288 1289 1290 1291 1292
#define PD_LAUNCH_ELEMENTWISE_ADD_WITH_CAST_KERNEL                       \
  do {                                                                   \
    ElementwiseAddWithCastCUDAKernel<T1, T2, T3, kVecSize>               \
        <<<config.block_per_grid, config.thread_per_block, 0, stream>>>( \
            x, y, z, n);                                                 \
1293 1294 1295 1296 1297 1298
  } while (0)

  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAUNCH_ELEMENTWISE_ADD_WITH_CAST_KERNEL);
#undef PD_LAUNCH_ELEMENTWISE_ADD_WITH_CAST_KERNEL
}

1299
template <typename T>
L
Leo Chen 已提交
1300
class DistributedFusedLambOpKernel<phi::GPUContext, T>
1301 1302 1303 1304
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
1305
    auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
1306 1307 1308
    auto stream = dev_ctx.stream();
    auto place = dev_ctx.GetPlace();

1309 1310 1311
    auto *found_inf_t = ctx.Output<framework::Tensor>("FoundInf");
    found_inf_t->Resize({1});

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    // Step 1: Get fp16 param and grad tensors
    int64_t fp16_numel;
    auto *fp16_param = GetSameInOutTensorPtr<platform::float16, true>(
        ctx, place, "FP16FusedParam", "FP16FusedParamOut", &fp16_numel);
    bool has_fp16_param = (fp16_numel > 0);
    const platform::float16 *fp16_grad = nullptr;
    if (has_fp16_param) {
      fp16_grad = GetInputTensorPtr<platform::float16>(ctx, "FP16FusedGrad");
    } else {
      fp16_param = nullptr;
    }

    // Step 2: Get fp32 param and grad tensors
    int64_t fp32_numel = 0;
    auto *fp32_param = GetSameInOutTensorPtr<float, true>(
        ctx, place, "FP32FusedParam", "FP32FusedParamOut", &fp32_numel);
1328 1329
    PADDLE_ENFORCE_GE(fp32_numel,
                      fp16_numel,
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
                      platform::errors::InvalidArgument(
                          "The element number in FP32FusedParam should be not "
                          "less than FP16FusedParam."));

    fp32_numel -= fp16_numel;  // the FP32FusedParam contains fp32 param and
                               // fp16 master weight
    bool has_fp32_param = (fp32_numel > 0);
    const float *fp32_grad = nullptr;
    if (has_fp32_param) {
      fp32_grad = GetInputTensorPtr<float>(ctx, "FP32FusedGrad");
    } else {
      PADDLE_ENFORCE_EQ(
1342 1343
          has_fp16_param,
          true,
1344 1345 1346 1347 1348 1349 1350 1351 1352
          platform::errors::InvalidArgument(
              "Either FP32FusedGrad or FP16FusedGrad cannot be NULL."));
    }

    auto numel = fp32_numel + fp16_numel;
    VLOG(1) << "numel = " << numel << " , fp32_numel = " << fp32_numel
            << " , fp16_numel = " << fp16_numel;

    // The NVIDIA cub library does not support number > INT32_MAX
1353 1354
    PADDLE_ENFORCE_LE(numel,
                      std::numeric_limits<int>::max(),
1355 1356 1357 1358
                      platform::errors::Unimplemented(
                          "Too many parameter number. Only <= %d is supported.",
                          std::numeric_limits<int>::max()));

1359 1360
    auto acc_steps = ctx.Attr<int>("acc_steps");
    PADDLE_ENFORCE_GE(
1361 1362
        acc_steps,
        1,
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        platform::errors::InvalidArgument(
            "The gradient accumulation steps should be not less than 1."));
    if (acc_steps > 1) {
      auto *step_t = ctx.Output<framework::Tensor>("AccStep");
      PADDLE_ENFORCE_NOT_NULL(
          step_t,
          platform::errors::InvalidArgument(
              "Output(AccStep) cannot be nullptr when Attr(acc_steps) > 1."));
      bool is_initialized = step_t->IsInitialized();
      int64_t *step_ptr;
      if (is_initialized) {
        step_ptr = step_t->mutable_data<int64_t>(platform::CPUPlace());
        ++(*step_ptr);
      } else {
        step_t->Resize({1});
        step_ptr = step_t->mutable_data<int64_t>(platform::CPUPlace());
        *step_ptr = 1;
      }
      int64_t rounded_step = (*step_ptr) % acc_steps;

      float *fp32_acc_grad = nullptr;
      if (has_fp32_param) {
        auto *fp32_acc_grad_t =
            ctx.Output<framework::Tensor>("FP32AccFusedGrad");
        PADDLE_ENFORCE_NOT_NULL(
1388 1389 1390 1391
            fp32_acc_grad_t,
            platform::errors::InvalidArgument(
                "Output(FP32AccFusedGrad) cannot be nullptr "
                "when Attr(acc_steps) > 1."));
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
        if (!fp32_acc_grad_t->IsInitialized()) {
          fp32_acc_grad_t->Resize({static_cast<int64_t>(fp32_numel)});
          fp32_acc_grad = fp32_acc_grad_t->mutable_data<float>(place);
        } else {
          fp32_acc_grad = fp32_acc_grad_t->data<float>();
        }
      }

      platform::float16 *fp16_acc_grad = nullptr;
      float *master_acc_grad = nullptr;
1402
      bool use_master_acc_grad = false;
1403
      if (has_fp16_param) {
1404
        use_master_acc_grad = ctx.Attr<bool>("use_master_acc_grad");
1405 1406 1407
        auto *fp16_acc_grad_t =
            ctx.Output<framework::Tensor>("FP16AccFusedGrad");
        PADDLE_ENFORCE_NOT_NULL(
1408 1409 1410 1411
            fp16_acc_grad_t,
            platform::errors::InvalidArgument(
                "Output(FP16AccFusedGrad) cannot be nullptr "
                "when Attr(acc_steps) > 1."));
1412
        if (!fp16_acc_grad_t->IsInitialized()) {
1413 1414 1415
          auto acc_grad_size =
              use_master_acc_grad ? (3 * fp16_numel) : fp16_numel;
          fp16_acc_grad_t->Resize({static_cast<int64_t>(acc_grad_size)});
1416 1417 1418 1419 1420
          fp16_acc_grad =
              fp16_acc_grad_t->mutable_data<platform::float16>(place);
        } else {
          fp16_acc_grad = fp16_acc_grad_t->data<platform::float16>();
        }
1421 1422 1423 1424
        if (use_master_acc_grad) {
          master_acc_grad =
              reinterpret_cast<float *>(fp16_acc_grad + fp16_numel);
        }
1425 1426 1427 1428 1429
      }

      // Inplace addto
      if (has_fp32_param) {
        if (rounded_step == 1) {
1430 1431 1432 1433 1434 1435
          memory::Copy(place,
                       fp32_acc_grad,
                       place,
                       fp32_grad,
                       fp32_numel * sizeof(float),
                       stream);
1436
        } else {
1437 1438 1439 1440 1441 1442
          LaunchElementwiseAddWithCastKernel(dev_ctx,
                                             fp32_grad,
                                             fp32_acc_grad,
                                             fp32_acc_grad,
                                             fp32_numel,
                                             stream);
1443 1444 1445 1446
        }
      }

      if (has_fp16_param) {
1447 1448
        if (acc_steps == 2 || !use_master_acc_grad) {
          if (rounded_step != 1) {
1449 1450 1451 1452 1453 1454
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_acc_grad,
                                               fp16_grad,
                                               fp16_acc_grad,
                                               fp16_numel,
                                               stream);
1455
          } else {
1456 1457 1458 1459 1460 1461
            memory::Copy(place,
                         fp16_acc_grad,
                         place,
                         fp16_grad,
                         fp16_numel * sizeof(platform::float16),
                         stream);
1462 1463 1464
          }
        } else {  // acc_steps >= 3
          if (rounded_step == 0) {
1465 1466 1467 1468 1469 1470
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_grad,
                                               master_acc_grad,
                                               fp16_acc_grad,
                                               fp16_numel,
                                               stream);
1471
          } else if (rounded_step == 1) {
1472 1473 1474 1475 1476 1477
            memory::Copy(place,
                         fp16_acc_grad,
                         place,
                         fp16_grad,
                         fp16_numel * sizeof(platform::float16),
                         stream);
1478
          } else if (rounded_step == 2) {
1479 1480 1481 1482 1483 1484
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_grad,
                                               fp16_acc_grad,
                                               master_acc_grad,
                                               fp16_numel,
                                               stream);
1485
          } else {
1486 1487 1488 1489 1490 1491
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_grad,
                                               master_acc_grad,
                                               master_acc_grad,
                                               fp16_numel,
                                               stream);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
          }
        }
      }

      auto *stop_update_t = ctx.Output<framework::Tensor>("StopUpdate");
      stop_update_t->Resize({1});
      auto *stop_update =
          stop_update_t->mutable_data<bool>(platform::CPUPlace());

      auto *found_inf_cpu =
          found_inf_t->mutable_data<bool>(platform::CPUPlace());

      if (rounded_step != 0) {
        *stop_update = true;
        auto *found_inf_cpu =
            found_inf_t->mutable_data<bool>(platform::CPUPlace());
        *found_inf_cpu = false;
        return;
      } else {
        // swap pointer
        fp32_grad = fp32_acc_grad;
        fp16_grad = fp16_acc_grad;
        *stop_update = false;
        found_inf_t->clear();
      }
    }

1519
    // Step 3: Get ParamInfo
1520 1521 1522 1523
    const auto *param_info_tensor = GetInputTensorPtr<int>(ctx, "ParamInfo");
    auto fp32_local_start_idx = param_info_tensor[0];
    auto fp32_local_param_num = param_info_tensor[1];
    auto fp32_global_param_num = param_info_tensor[2];
1524 1525 1526 1527 1528
    auto fp32_weight_decay_end_idx = param_info_tensor[3];
    auto fp16_local_start_idx = param_info_tensor[4];
    auto fp16_local_param_num = param_info_tensor[5];
    auto fp16_global_param_num = param_info_tensor[6];
    auto fp16_weight_decay_end_idx = param_info_tensor[7];
1529 1530 1531

    auto local_param_num = fp32_local_param_num + fp16_local_param_num;
    auto param_num = fp32_global_param_num + fp16_global_param_num;
1532 1533
    PADDLE_ENFORCE_LE(local_param_num,
                      param_num,
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
                      platform::errors::InvalidArgument(
                          "The local parameter number should not exceed the "
                          "global parameter number."));
    VLOG(1) << "local_param_num = " << local_param_num
            << " , global_param_num = " << param_num
            << " , fp32_local_start_idx = " << fp32_local_start_idx
            << " , fp32_local_param_num = " << fp32_local_param_num
            << " , fp32_global_param_num = " << fp32_global_param_num
            << " , fp16_local_start_idx = " << fp16_local_start_idx
            << " , fp16_local_param_num = " << fp16_local_param_num
            << " , fp16_global_param_num = " << fp16_global_param_num;

    // Step 4: Get LearningRate, Moment1, Moment2, Beta1Pow, Beta2Pow,
1547
    // GlobalScale
1548 1549 1550
    const auto *global_scale = GetInputTensorPtr<float>(ctx, "GlobalScale");
    const auto *lr = GetInputTensorPtr<float>(ctx, "LearningRate");
    int64_t partial_numel = 0;
1551 1552
    auto *moment1 = GetSameInOutTensorPtr<float>(
        ctx, place, "Moment1", "Moment1Out", &partial_numel);
1553

1554 1555
    PADDLE_ENFORCE_EQ(numel % partial_numel,
                      0,
1556 1557 1558
                      platform::errors::InvalidArgument(
                          "The total parameter number %d should be divided "
                          "exactly by the element number %d of Moment1.",
1559 1560
                          numel,
                          partial_numel));
1561

1562 1563 1564
    // The num_devices means the number of devices that shard a complete set
    // of all parameters. It may be num_devices < nranks or num_devices ==
    // nranks.
1565 1566 1567 1568
    int64_t num_devices = numel / partial_numel;
    VLOG(1) << "num_devices = " << num_devices
            << " , partial_numel = " << partial_numel;

1569 1570
    PADDLE_ENFORCE_EQ(fp32_numel % num_devices,
                      0,
1571 1572 1573
                      platform::errors::InvalidArgument(
                          "The fp32 parameter number %d should be divided "
                          "exactly by the device number %d.",
1574 1575 1576 1577
                          fp32_numel,
                          num_devices));
    PADDLE_ENFORCE_EQ(fp16_numel % num_devices,
                      0,
1578 1579 1580
                      platform::errors::InvalidArgument(
                          "The fp16 parameter number %d should be divided "
                          "exactly by the device number %d.",
1581 1582
                          fp16_numel,
                          num_devices));
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

    auto *moment2 =
        GetSameInOutTensorPtr<float>(ctx, place, "Moment2", "Moment2Out");
    auto *beta1pow =
        GetSameInOutTensorPtr<float>(ctx, place, "Beta1Pow", "Beta1PowOut");
    auto *beta2pow =
        GetSameInOutTensorPtr<float>(ctx, place, "Beta2Pow", "Beta2PowOut");

    auto *found_inf = found_inf_t->mutable_data<bool>(place);

1593 1594
    // Step 5: Get attributes weight_decay, beta1, beta2, epsilon,
    // max_grad_norm, ring_id,
1595
    // use_master_param_norm, is_grad_scaled_by_nranks
1596
    auto weight_decay = ctx.Attr<float>("weight_decay");
1597 1598 1599 1600 1601
    auto beta1 = ctx.Attr<float>("beta1");
    auto beta2 = ctx.Attr<float>("beta2");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto max_global_grad_norm = ctx.Attr<float>("max_global_grad_norm");
    auto clip_after_allreduce = ctx.Attr<bool>("clip_after_allreduce");
1602
    auto nranks = ctx.Attr<int64_t>("nranks");
1603 1604
    PADDLE_ENFORCE_GE(nranks,
                      num_devices,
1605 1606 1607
                      phi::errors::InvalidArgument(
                          "The nranks must be not less than num_devices."));
    PADDLE_ENFORCE_EQ(
1608 1609
        nranks % num_devices,
        0,
1610 1611 1612 1613 1614
        phi::errors::InvalidArgument(
            "The nranks must be exactly divided by num_devices."));
    bool local_shard = (nranks > num_devices);

    const auto &ring_ids = ctx.Attr<std::vector<int>>("ring_id");
1615 1616
    auto use_master_param_norm = ctx.Attr<bool>("use_master_param_norm");
    auto is_grad_scaled_by_nranks = ctx.Attr<bool>("is_grad_scaled_by_nranks");
1617 1618
    auto use_hierarchical_allreduce =
        ctx.Attr<bool>("use_hierarchical_allreduce");
1619 1620 1621
    VLOG(10) << "max_global_grad_norm = " << max_global_grad_norm
             << " , clip_after_allreduce = " << clip_after_allreduce
             << " , use_master_param_norm = " << use_master_param_norm
1622
             << " , is_grad_scaled_by_nranks = " << is_grad_scaled_by_nranks
1623 1624 1625
             << " , local_shard = " << local_shard
             << " , use_hierarchical_allreduce = "
             << use_hierarchical_allreduce;
1626 1627

    // Step 6: allreduce + global norm gradient clip
1628
    int64_t global_rank = 0, local_rank = 0;
1629 1630
    ncclComm_t global_comm = nullptr, local_comm = nullptr,
               external_comm = nullptr;
1631
    if (nranks > 1) {
1632
      auto *nccl_comm_handle =
1633 1634 1635 1636 1637 1638 1639 1640 1641
          platform::NCCLCommContext::Instance().Get(ring_ids[0], place);
      global_comm = nccl_comm_handle->comm();
      global_rank = nccl_comm_handle->rank();

      if (local_shard) {
        auto *local_nccl_comm_handle =
            platform::NCCLCommContext::Instance().Get(ring_ids[1], place);
        local_comm = local_nccl_comm_handle->comm();
        local_rank = local_nccl_comm_handle->rank();
1642 1643 1644 1645 1646
        if (use_hierarchical_allreduce) {
          external_comm = platform::NCCLCommContext::Instance()
                              .Get(ring_ids[2], place)
                              ->comm();
        }
1647 1648 1649 1650
      } else {
        local_comm = global_comm;
        local_rank = global_rank;
      }
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
    }

    memory::Buffer grad_norm_square_buffer(place);
    auto *fp32_square_grad_norm = grad_norm_square_buffer.Alloc<float>(2);
    memory::Buffer cub_tmp_buffer(place);

    memory::Buffer sum_grad_buffer(place);
    float *fp32_sum_grad;
    platform::float16 *fp16_sum_grad;
    auto fp32_numel_each_device = fp32_numel / num_devices;
    auto fp16_numel_each_device = fp16_numel / num_devices;
1662 1663 1664 1665 1666 1667 1668 1669 1670
    if (local_shard) {
      auto ptr = sum_grad_buffer.Alloc<uint8_t>(
          fp32_numel * sizeof(float) + fp16_numel * sizeof(platform::float16));
      fp32_sum_grad = has_fp32_param ? reinterpret_cast<float *>(ptr) : nullptr;
      fp16_sum_grad = has_fp16_param ? reinterpret_cast<platform::float16 *>(
                                           ptr + fp32_numel * sizeof(float))
                                     : nullptr;
    } else if (nranks > 1 ||
               (max_global_grad_norm > 0 && !clip_after_allreduce)) {
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
      auto ptr = sum_grad_buffer.Alloc<uint8_t>(
          fp32_numel_each_device * sizeof(float) +
          fp16_numel_each_device * sizeof(platform::float16));
      fp32_sum_grad = has_fp32_param ? reinterpret_cast<float *>(ptr) : nullptr;
      fp16_sum_grad = has_fp16_param
                          ? reinterpret_cast<platform::float16 *>(
                                ptr + fp32_numel_each_device * sizeof(float))
                          : nullptr;
    } else {
      // NOTE: The const_cast here is not important. The fp32_sum_grad and
      // fp16_sum_grad would not be changed when num_devices == 1
      // But if I do not perform const_cast here, there would be more
      // if-else codes (num_devices > 1) when I write the following code.
      // So I prefer to use const_cast to unify the following code to reduce
      // the if-else codes.
      fp32_sum_grad = const_cast<float *>(fp32_grad);
      fp16_sum_grad = const_cast<platform::float16 *>(fp16_grad);
    }

    float rescale_grad = 1.0f;
    if (!is_grad_scaled_by_nranks) {
1692
      rescale_grad /= nranks;
1693 1694 1695 1696 1697
    }

    if (max_global_grad_norm > 0) {
      if (clip_after_allreduce) {
        // (1) ReduceScater first
1698
        if (local_shard) {
1699 1700
          if (use_hierarchical_allreduce) {
            NCCLReduceScatterWithScale(
S
sneaxiy 已提交
1701
                fp32_grad,
1702 1703 1704 1705 1706 1707
                fp32_sum_grad + local_rank * fp32_numel_each_device,
                fp32_numel_each_device,
                num_devices,
                local_comm,
                stream,
                dev_ctx);
S
sneaxiy 已提交
1708 1709 1710 1711 1712 1713 1714 1715
            NCCLAllReduceWithScale(
                fp32_sum_grad + local_rank * fp32_numel_each_device,
                fp32_sum_grad + local_rank * fp32_numel_each_device,
                fp32_numel_each_device,
                nranks / num_devices,
                external_comm,
                stream,
                dev_ctx);
1716 1717

            NCCLReduceScatterWithScale(
S
sneaxiy 已提交
1718
                fp16_grad,
1719 1720 1721 1722 1723 1724
                fp16_sum_grad + local_rank * fp16_numel_each_device,
                fp16_numel_each_device,
                num_devices,
                local_comm,
                stream,
                dev_ctx);
S
sneaxiy 已提交
1725 1726 1727 1728 1729 1730 1731 1732
            NCCLAllReduceWithScale(
                fp16_sum_grad + local_rank * fp16_numel_each_device,
                fp16_sum_grad + local_rank * fp16_numel_each_device,
                fp16_numel_each_device,
                nranks / num_devices,
                external_comm,
                stream,
                dev_ctx);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
          } else {
            NCCLAllReduceWithScale(fp32_grad,
                                   fp32_sum_grad,
                                   fp32_numel,
                                   nranks,
                                   global_comm,
                                   stream,
                                   dev_ctx);
            NCCLAllReduceWithScale(fp16_grad,
                                   fp16_sum_grad,
                                   fp16_numel,
                                   nranks,
                                   global_comm,
                                   stream,
                                   dev_ctx);
          }
1749 1750 1751
          fp32_sum_grad += (local_rank * fp32_numel_each_device);
          fp16_sum_grad += (local_rank * fp16_numel_each_device);
        } else {
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
          NCCLReduceScatterWithScale(fp32_grad,
                                     fp32_sum_grad,
                                     fp32_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx);
          NCCLReduceScatterWithScale(fp16_grad,
                                     fp16_sum_grad,
                                     fp16_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx);
1766
        }
1767
        // (2) Calculate the global grad norm
1768 1769 1770 1771 1772 1773
        GetSquareGradNorm(fp32_sum_grad,
                          fp32_numel_each_device,
                          fp16_sum_grad,
                          fp16_numel_each_device,
                          fp32_square_grad_norm,
                          stream,
1774 1775 1776 1777
                          &cub_tmp_buffer);
        VLOG(1) << "Grad square norm before all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
        if (num_devices > 1) {
1778 1779 1780 1781 1782 1783 1784 1785
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::ncclAllReduce(fp32_square_grad_norm,
                                               fp32_square_grad_norm,
                                               1,
                                               ncclFloat32,
                                               ncclSum,
                                               local_comm,
                                               stream));
1786 1787 1788 1789 1790
        }
        VLOG(1) << "Grad square norm after all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
      } else {
        // (1) Calculate the local grad norm
1791 1792 1793 1794 1795 1796 1797
        GetSquareGradNorm(fp32_grad,
                          fp32_numel,
                          fp16_grad,
                          fp16_numel,
                          fp32_square_grad_norm,
                          stream,
                          &cub_tmp_buffer);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
        VLOG(1) << "Grad square norm before all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
        // (2) Calculate the gradient clip scale
        float *fp32_scale = nullptr;
        platform::float16 *fp16_scale = nullptr;
        if (has_fp32_param && has_fp16_param) {
          auto *ptr = cub_tmp_buffer.Alloc<uint8_t>(sizeof(float) +
                                                    sizeof(platform::float16));
          fp32_scale = reinterpret_cast<float *>(ptr);
          fp16_scale =
              reinterpret_cast<platform::float16 *>(ptr + sizeof(float));
        } else if (has_fp32_param) {
          fp32_scale = cub_tmp_buffer.Alloc<float>(1);
        } else {
          fp16_scale = cub_tmp_buffer.Alloc<platform::float16>(1);
        }

        float clip_scale = 1.0f;
        if (is_grad_scaled_by_nranks) {
1817
          clip_scale *= nranks;
1818
        }
1819
        CalcGradNormClipBeforeAllReduceScale<float, platform::float16>
1820 1821 1822 1823 1824
            <<<1, 1, 0, stream>>>(global_scale,
                                  max_global_grad_norm,
                                  fp32_square_grad_norm,
                                  fp32_scale,
                                  fp16_scale,
1825
                                  clip_scale);
1826 1827 1828 1829 1830
        if (fp32_scale) {
          VLOG(1) << "Grad scale: " << FlattenToString(fp32_scale, 1, place);
        } else {
          VLOG(1) << "Grad scale: " << FlattenToString(fp16_scale, 1, place);
        }
1831
        if (nranks > 1) {
1832 1833 1834 1835 1836 1837 1838 1839
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::ncclAllReduce(fp32_square_grad_norm,
                                               fp32_square_grad_norm,
                                               1,
                                               ncclFloat32,
                                               ncclSum,
                                               global_comm,
                                               stream));
1840 1841
        }
        // (3) Do ReduceScatter with scale
1842
        if (local_shard) {
1843 1844
          if (use_hierarchical_allreduce) {
            NCCLReduceScatterWithScale(
S
sneaxiy 已提交
1845
                fp32_grad,
1846 1847 1848 1849 1850
                fp32_sum_grad + local_rank * fp32_numel_each_device,
                fp32_numel_each_device,
                num_devices,
                local_comm,
                stream,
S
sneaxiy 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859
                dev_ctx,
                fp32_scale);
            NCCLAllReduceWithScale(
                fp32_sum_grad + local_rank * fp32_numel_each_device,
                fp32_sum_grad + local_rank * fp32_numel_each_device,
                fp32_numel_each_device,
                nranks / num_devices,
                external_comm,
                stream,
1860 1861 1862
                dev_ctx);

            NCCLReduceScatterWithScale(
S
sneaxiy 已提交
1863
                fp16_grad,
1864 1865 1866 1867 1868
                fp16_sum_grad + local_rank * fp16_numel_each_device,
                fp16_numel_each_device,
                num_devices,
                local_comm,
                stream,
S
sneaxiy 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877
                dev_ctx,
                fp16_scale);
            NCCLAllReduceWithScale(
                fp16_sum_grad + local_rank * fp16_numel_each_device,
                fp16_sum_grad + local_rank * fp16_numel_each_device,
                fp16_numel_each_device,
                nranks / num_devices,
                external_comm,
                stream,
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
                dev_ctx);
          } else {
            NCCLAllReduceWithScale(fp32_grad,
                                   fp32_sum_grad,
                                   fp32_numel,
                                   nranks,
                                   global_comm,
                                   stream,
                                   dev_ctx,
                                   fp32_scale);
            NCCLAllReduceWithScale(fp16_grad,
                                   fp16_sum_grad,
                                   fp16_numel,
                                   nranks,
                                   global_comm,
                                   stream,
                                   dev_ctx,
                                   fp16_scale);
          }
1897 1898 1899
          fp32_sum_grad += (local_rank * fp32_numel_each_device);
          fp16_sum_grad += (local_rank * fp16_numel_each_device);
        } else {
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
          NCCLReduceScatterWithScale(fp32_grad,
                                     fp32_sum_grad,
                                     fp32_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx,
                                     fp32_scale);
          NCCLReduceScatterWithScale(fp16_grad,
                                     fp16_sum_grad,
                                     fp16_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx,
                                     fp16_scale);
1916
        }
1917 1918 1919 1920 1921
        // (4) mark max_global_grad_norm as 0, meaning that clip has been
        // already performed
        max_global_grad_norm = 0;
      }
    } else {
1922
      if (local_shard) {
1923 1924
        if (use_hierarchical_allreduce) {
          NCCLReduceScatterWithScale(
S
sneaxiy 已提交
1925
              fp32_grad,
1926 1927 1928 1929 1930 1931
              fp32_sum_grad + local_rank * fp32_numel_each_device,
              fp32_numel_each_device,
              num_devices,
              local_comm,
              stream,
              dev_ctx);
S
sneaxiy 已提交
1932 1933 1934 1935 1936 1937 1938 1939
          NCCLAllReduceWithScale(
              fp32_sum_grad + local_rank * fp32_numel_each_device,
              fp32_sum_grad + local_rank * fp32_numel_each_device,
              fp32_numel_each_device,
              nranks / num_devices,
              external_comm,
              stream,
              dev_ctx);
1940 1941

          NCCLReduceScatterWithScale(
S
sneaxiy 已提交
1942
              fp16_grad,
1943 1944 1945 1946 1947 1948
              fp16_sum_grad + local_rank * fp16_numel_each_device,
              fp16_numel_each_device,
              num_devices,
              local_comm,
              stream,
              dev_ctx);
S
sneaxiy 已提交
1949 1950 1951 1952 1953 1954 1955 1956
          NCCLAllReduceWithScale(
              fp16_sum_grad + local_rank * fp16_numel_each_device,
              fp16_sum_grad + local_rank * fp16_numel_each_device,
              fp16_numel_each_device,
              nranks / num_devices,
              external_comm,
              stream,
              dev_ctx);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
        } else {
          NCCLAllReduceWithScale(fp32_grad,
                                 fp32_sum_grad,
                                 fp32_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx);
          NCCLAllReduceWithScale(fp16_grad,
                                 fp16_sum_grad,
                                 fp16_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx);
        }
1973 1974 1975
        fp32_sum_grad += (local_rank * fp32_numel_each_device);
        fp16_sum_grad += (local_rank * fp16_numel_each_device);
      } else {
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
        NCCLReduceScatterWithScale(fp32_grad,
                                   fp32_sum_grad,
                                   fp32_numel_each_device,
                                   num_devices,
                                   global_comm,
                                   stream,
                                   dev_ctx);
        NCCLReduceScatterWithScale(fp16_grad,
                                   fp16_sum_grad,
                                   fp16_numel_each_device,
                                   num_devices,
                                   global_comm,
                                   stream,
                                   dev_ctx);
1990
      }
1991 1992 1993 1994 1995 1996
      CheckHasNanInfGrad(fp32_sum_grad,
                         fp32_numel_each_device,
                         fp16_sum_grad,
                         fp16_numel_each_device,
                         fp32_square_grad_norm,
                         stream,
1997 1998
                         &cub_tmp_buffer);
      if (num_devices > 1) {
1999 2000 2001 2002 2003 2004 2005 2006
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllReduce(fp32_square_grad_norm,
                                             fp32_square_grad_norm,
                                             1,
                                             ncclFloat32,
                                             ncclSum,
                                             local_comm,
                                             stream));
2007 2008 2009 2010 2011 2012
      }
      max_global_grad_norm = 0;
    }
    VLOG(10) << "ReduceScatter done";

    // Step 7: update the moment1, moment2. Calcuate the trust_ratio_div
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
    auto *fused_offsets_t = ctx.Input<framework::Tensor>("FusedParamOffsets");
    auto *fused_offsets = fused_offsets_t->data<int>();
    auto *fp32_partial_fused_offsets_t =
        ctx.Input<framework::Tensor>("FP32ShardFusedParamOffsets");
    const auto *fp32_partial_fused_offsets =
        fp32_partial_fused_offsets_t->data<int>();
    auto *fp16_partial_fused_offsets_t =
        ctx.Input<framework::Tensor>("FP16ShardFusedParamOffsets");
    const auto *fp16_partial_fused_offsets =
        fp16_partial_fused_offsets_t->data<int>();

2024 2025
    auto *step = ctx.Output<framework::Tensor>("Step")->data<int64_t>();

2026
    VLOG(1) << "FusedParamOffsets: "
2027 2028
            << FlattenToString(fused_offsets,
                               fused_offsets_t->numel(),
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
                               fused_offsets_t->place());
    VLOG(1) << "FP32ShardFusedParamOffsets: "
            << FlattenToString(fp32_partial_fused_offsets,
                               fp32_partial_fused_offsets_t->numel(),
                               fp32_partial_fused_offsets_t->place());
    VLOG(1) << "FP16ShardFusedParamOffsets: "
            << FlattenToString(fp16_partial_fused_offsets,
                               fp16_partial_fused_offsets_t->numel(),
                               fp16_partial_fused_offsets_t->place());

2039 2040
    memory::Buffer trust_ratio_div_buffer(place);
    auto *trust_ratio_div = trust_ratio_div_buffer.Alloc<float>(partial_numel);
2041 2042
    auto fp32_offset = local_rank * fp32_numel_each_device;
    auto fp16_offset = local_rank * fp16_numel_each_device;
2043 2044
    if (has_fp32_param) {
      VLOG(10) << "Update FP32 Moment and TrustRatioDiv starts";
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
      MultiTensorUpdateLambMomentAndTrustRatioDiv(dev_ctx,
                                                  fp32_partial_fused_offsets,
                                                  fp32_local_param_num,
                                                  fp32_param + fp32_offset,
                                                  fp32_sum_grad,
                                                  fp32_square_grad_norm,
                                                  global_scale,
                                                  beta1pow,
                                                  beta2pow,
                                                  moment1,
                                                  moment2,
                                                  trust_ratio_div,
                                                  found_inf,
                                                  step,
                                                  weight_decay,
                                                  fp32_weight_decay_end_idx,
                                                  beta1,
                                                  beta2,
                                                  epsilon,
                                                  max_global_grad_norm,
                                                  rescale_grad);
2066 2067 2068 2069 2070 2071
      VLOG(10) << "Update FP32 Moment and TrustRatioDiv done";
    }
    float *master_param = nullptr;
    if (has_fp16_param) {
      master_param = fp32_param + fp32_numel;
      VLOG(10) << "Update FP16 Moment and TrustRatioDiv starts";
2072
      auto tmp_found_inf = has_fp32_param ? nullptr : found_inf;
2073
      auto tmp_step = has_fp32_param ? nullptr : step;
2074
      MultiTensorUpdateLambMomentAndTrustRatioDiv(
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
          dev_ctx,
          fp16_partial_fused_offsets,
          fp16_local_param_num,
          master_param + fp16_offset,
          fp16_sum_grad,
          fp32_square_grad_norm,
          global_scale,
          beta1pow,
          beta2pow,
          moment1 + fp32_numel_each_device,
2085
          moment2 + fp32_numel_each_device,
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
          trust_ratio_div + fp32_numel_each_device,
          tmp_found_inf,
          tmp_step,
          weight_decay,
          fp16_weight_decay_end_idx,
          beta1,
          beta2,
          epsilon,
          max_global_grad_norm,
          rescale_grad);
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
      VLOG(10) << "Update FP16 Moment and TrustRatioDiv done";
    }

    VLOG(10) << "Update Moment and TrustRatioDiv done hehahaha";

    // Step 8: calculate L2-Norm square of parameter and trust_ratio_div
    memory::Buffer square_norm_buffer(place);
    auto *param_square_norm = square_norm_buffer.Alloc<float>(2 * param_num);
    auto *trust_ratio_div_square_norm = param_square_norm + param_num;
    if (num_devices > 1) {
      if (use_master_param_norm) {
        FillZeroWithPtr(param_square_norm + fp32_global_param_num,
2108 2109
                        2 * param_num - fp32_global_param_num,
                        stream);
2110 2111 2112 2113
      } else {
        FillZeroWithPtr(trust_ratio_div_square_norm, param_num, stream);
      }
    }
2114 2115 2116 2117 2118 2119
    MultiTensorL2Norm(place,
                      stream,
                      fp32_param,
                      fused_offsets,
                      fp32_global_param_num,
                      param_square_norm);
2120
    if (use_master_param_norm) {
2121 2122 2123 2124 2125
      MultiTensorL2Norm(place,
                        stream,
                        master_param + fp16_offset,
                        fp16_partial_fused_offsets,
                        fp16_local_param_num,
2126
                        param_square_norm + fp16_local_start_idx);
2127
    } else {
2128 2129
      MultiTensorL2Norm(place,
                        stream,
2130 2131 2132 2133 2134
                        fp16_param + fused_offsets[fp16_local_start_idx] -
                            fused_offsets[fp32_global_param_num],
                        fused_offsets + fp16_local_start_idx,
                        fp16_local_param_num,
                        param_square_norm + fp16_local_start_idx);
2135 2136
    }

2137 2138 2139 2140 2141
    MultiTensorL2Norm(place,
                      stream,
                      trust_ratio_div,
                      fp32_partial_fused_offsets,
                      fp32_local_param_num,
2142
                      trust_ratio_div_square_norm + fp32_local_start_idx);
2143 2144 2145 2146 2147
    MultiTensorL2Norm(place,
                      stream,
                      trust_ratio_div + fp32_numel_each_device,
                      fp16_partial_fused_offsets,
                      fp16_local_param_num,
2148
                      trust_ratio_div_square_norm + fp16_local_start_idx);
2149 2150 2151 2152 2153 2154 2155 2156

    VLOG(1) << "TrustRatioDiv L2-Norm before allreduce: "
            << FlattenToString(trust_ratio_div_square_norm, param_num, place);
    if (num_devices > 1) {
      if (use_master_param_norm) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
            param_square_norm + fp32_global_param_num,
            param_square_norm + fp32_global_param_num,
2157 2158 2159 2160 2161
            2 * param_num - fp32_global_param_num,
            ncclFloat32,
            ncclSum,
            local_comm,
            stream));
2162
      } else {
2163 2164 2165 2166 2167 2168 2169 2170
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllReduce(trust_ratio_div_square_norm,
                                             trust_ratio_div_square_norm,
                                             param_num,
                                             ncclFloat32,
                                             ncclSum,
                                             local_comm,
                                             stream));
2171 2172 2173 2174
      }
      VLOG(10) << "ncclAllReduce done";
    }

2175 2176
    LogParamAndTrustRatioDivSquareNorm<1>(
        ctx, param_square_norm, trust_ratio_div_square_norm);
2177 2178 2179 2180
    VLOG(10) << "Calculate L2-Norm of Param and TrustRatioDiv done";

    // Step 9: update parameter, beta1pow, beta2pow. All gather parameters.
    if (has_fp32_param) {
2181
      MultiTensorUpdateLambParamAndBetaPows<float>(
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
          dev_ctx,
          fp32_partial_fused_offsets,
          fp32_local_param_num,
          trust_ratio_div,
          lr,
          param_square_norm + fp32_local_start_idx,
          trust_ratio_div_square_norm + fp32_local_start_idx,
          found_inf,
          fp32_param + fp32_offset,
          nullptr,
          beta1pow,
          beta2pow,
          beta1,
          beta2);
2196 2197
      if (num_devices > 1) {
        // ncclAllGather
2198 2199 2200 2201 2202 2203 2204
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllGather(fp32_param + fp32_offset,
                                             fp32_param,
                                             fp32_numel_each_device,
                                             ncclFloat32,
                                             local_comm,
                                             stream));
2205
      }
2206 2207 2208

      beta1pow = nullptr;
      beta2pow = nullptr;
2209 2210
    }
    if (has_fp16_param) {
2211
      MultiTensorUpdateLambParamAndBetaPows<platform::float16>(
2212 2213 2214 2215 2216
          dev_ctx,
          fp16_partial_fused_offsets,
          fp16_local_param_num,
          trust_ratio_div + fp32_numel_each_device,
          lr,
2217
          param_square_norm + fp16_local_start_idx,
2218 2219 2220 2221 2222 2223 2224 2225
          trust_ratio_div_square_norm + fp16_local_start_idx,
          found_inf,
          fp16_param + fp16_offset,
          master_param + fp16_offset,
          beta1pow,
          beta2pow,
          beta1,
          beta2);
2226 2227
      if (num_devices > 1) {
        // ncclAllGather
2228 2229 2230 2231 2232 2233 2234
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllGather(fp16_param + fp16_offset,
                                             fp16_param,
                                             fp16_numel_each_device,
                                             ncclFloat16,
                                             local_comm,
                                             stream));
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
      }
    }
    VLOG(10) << "Update Param done";

    VLOG(1) << "IsFinite: " << IsFinite(dev_ctx, fp32_square_grad_norm);
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "distributed_fused_lamb op should be used with NCCL/RCCL."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
    distributed_fused_lamb,
L
Leo Chen 已提交
2255
    ops::DistributedFusedLambOpKernel<phi::GPUContext, float>);