distributed_fused_lamb_op.cu 82.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cmath>
16

17
#include "paddle/fluid/memory/buffer.h"
18
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
19 20
#include "paddle/fluid/operators/optimizers/cast_with_ptr.h"
#include "paddle/fluid/operators/optimizers/distributed_fused_lamb_op.h"
21
#include "paddle/fluid/operators/optimizers/multi_tensor_apply.h"
22 23 24 25
#include "paddle/fluid/operators/tensor_to_string.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/fluid/string/string_helper.h"
26
#include "paddle/phi/core/utils/data_type.h"
27
#include "paddle/phi/kernels/funcs/aligned_vector.h"
28 29 30 31 32 33 34 35

#ifdef __NVCC__
#include "cub/cub.cuh"
#include "math.h"  // NOLINT
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
36

37 38 39 40 41 42 43 44 45 46
#include "math.h"  // NOLINT
namespace cub = hipcub;
#endif

namespace paddle {
namespace operators {

template <typename T>
using MasterT = typename details::MPTypeTrait<T>::Type;

47 48 49 50 51 52 53 54 55 56 57 58
template <typename T>
static void FillZeroWithPtr(T *x, size_t n, gpuStream_t stream) {
  static_assert(!std::is_same<T, void>::value, "T cannot be void.");
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemsetAsync(x, 0, n * sizeof(T), stream));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(x, 0, n * sizeof(T), stream));
#endif
}

template <typename T, int BlockDim, int VecSize>
struct L2NormFunctor {
59 60 61 62 63 64 65
  DEVICE void operator()(int tensor_id,
                         int chunk_id,
                         int offset,
                         int size,
                         const T *x,
                         MasterT<T> *y,
                         int max_chunk_num) const {
66 67 68 69 70 71 72 73 74 75
    using MT = MasterT<T>;
    const T *ptr = x + offset;

    using BlockReduce = cub::BlockReduce<MT, BlockDim>;
    __shared__ typename BlockReduce::TempStorage storage;

    MT square_sum = static_cast<MT>(0);
    int i;
    for (i = threadIdx.x * VecSize; i + VecSize <= size;
         i += (BlockDim * VecSize)) {
76 77
      phi::AlignedVector<T, VecSize> tmp_vec;
      phi::Load(ptr + i, &tmp_vec);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#pragma unroll
      for (int j = 0; j < VecSize; ++j) {
        auto tmp = static_cast<MT>(tmp_vec[j]);
        square_sum += (tmp * tmp);
      }
    }

    for (; i < size; ++i) {
      auto tmp = static_cast<MT>(ptr[i]);
      square_sum += (tmp * tmp);
    }

    square_sum = BlockReduce(storage).Reduce(square_sum, cub::Sum());
    if (threadIdx.x == 0) {
      y[tensor_id * max_chunk_num + chunk_id] = square_sum;
    }
  }
};

97
template <typename InT, typename OutT, int BlockDim>
98 99 100 101 102 103 104 105 106 107 108 109
static __global__ void MultiTensorL2NormReduceAgainCUDAKernel(
    const InT *x, OutT *y, int max_chunk_num) {
  int tensor_id = blockIdx.x;
  x += (tensor_id * max_chunk_num);
  using BlockReduce = cub::BlockReduce<InT, BlockDim>;
  __shared__ typename BlockReduce::TempStorage storage;
  InT sum = static_cast<InT>(0);
  for (int i = threadIdx.x; i < max_chunk_num; i += BlockDim) {
    sum += x[i];
  }
  sum = BlockReduce(storage).Reduce(sum, cub::Sum());
  if (threadIdx.x == 0) {
110
    y[blockIdx.x] = static_cast<OutT>(sum);
111 112 113 114 115 116 117 118 119 120
  }
}

template <typename T>
static int GetChunkedVecSize(const T *ptr, int chunk_size) {
  static_assert(!std::is_same<T, void>::value, "T cannot be void.");

  constexpr int max_load_bits = 128;
  int valid_vec_size = max_load_bits / CHAR_BIT / sizeof(T);
  auto address = reinterpret_cast<uintptr_t>(ptr);
121 122 123
  constexpr int vec8 = alignof(phi::AlignedVector<T, 8>);
  constexpr int vec4 = alignof(phi::AlignedVector<T, 4>);
  constexpr int vec2 = alignof(phi::AlignedVector<T, 2>);
124
  chunk_size *= sizeof(T);
125 126 127 128 129 130 131 132 133 134 135
  if (address % vec8 == 0 && chunk_size % vec8 == 0) {
    return std::min(8, valid_vec_size);
  } else if (address % vec4 == 0 && chunk_size % vec4 == 0) {
    return std::min(4, valid_vec_size);
  } else if (address % vec2 == 0 && chunk_size % vec2 == 0) {
    return std::min(2, valid_vec_size);
  } else {
    return 1;
  }
}

136 137 138 139 140
#define PD_VEC_LAUNCH_KERNEL_CASE(__vec_size, ...) \
  case __vec_size: {                               \
    constexpr int kVecSize = __vec_size;           \
    __VA_ARGS__;                                   \
    break;                                         \
141 142
  }

143 144 145 146 147 148 149 150
#define PD_VEC_LAUNCH_KERNEL(__vec_size, ...)    \
  do {                                           \
    switch (__vec_size) {                        \
      PD_VEC_LAUNCH_KERNEL_CASE(8, __VA_ARGS__); \
      PD_VEC_LAUNCH_KERNEL_CASE(4, __VA_ARGS__); \
      PD_VEC_LAUNCH_KERNEL_CASE(2, __VA_ARGS__); \
      PD_VEC_LAUNCH_KERNEL_CASE(1, __VA_ARGS__); \
    }                                            \
151 152 153
  } while (0)

// TODO(zengjinle): which chunk_size is better?
154 155 156
template <typename InT,
          typename OutT,
          int MaxTensorNumPerLaunch = 160,
157
          int MaxChunkNumPerLaunch = 780>
158
static void MultiTensorL2Norm(const platform::CUDAPlace &place,
159 160 161 162 163
                              gpuStream_t stream,
                              const InT *x,
                              const int *offsets,
                              int n,
                              OutT *y,
164 165 166 167 168
                              int chunk_size = 65536) {
  if (n <= 0) return;

  constexpr int kNumTensor = MaxTensorNumPerLaunch;
  constexpr int kNumChunk = MaxChunkNumPerLaunch;
169 170 171
#ifdef PADDLE_WITH_HIP
  constexpr int kBlockDim = 256;
#else
172
  constexpr int kBlockDim = 512;
173
#endif
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

  int max_chunk_num = -1;
  int vec_size = 8;
  int total_chunk_num = 0;
  for (int i = 0; i < n; ++i) {
    vec_size = std::min(
        vec_size, GetChunkedVecSize(x + offsets[i] - offsets[0], chunk_size));
    int length = offsets[i + 1] - offsets[i];
    auto tmp_chunk_num = (length + chunk_size - 1) / chunk_size;
    max_chunk_num = std::max(max_chunk_num, tmp_chunk_num);
    total_chunk_num += tmp_chunk_num;
  }

  VLOG(1) << "MultiTensorL2Norm max_chunk_num = " << max_chunk_num
          << " , total_chunk_num = " << total_chunk_num
          << " , tensor_num = " << n;

  using MT = MasterT<InT>;
  memory::Buffer tmp_out(place);
  auto *tmp_out_ptr = tmp_out.Alloc<MT>(n * max_chunk_num);
  FillZeroWithPtr(tmp_out_ptr, n * max_chunk_num, stream);

196 197 198 199 200 201 202 203 204 205 206 207 208 209
#define PD_LAUNCH_MULTI_TENSOR_APPLY_L2_NORM_KERNEL                   \
  do {                                                                \
    using FunctorT = L2NormFunctor<InT, kBlockDim, kVecSize>;         \
    VLOG(10) << __func__ << " " << typeid(InT).name()                 \
             << " VecSize = " << kVecSize;                            \
    MultiTensorApply<FunctorT, kNumTensor, kNumChunk>(FunctorT(),     \
                                                      stream,         \
                                                      offsets,        \
                                                      n,              \
                                                      chunk_size,     \
                                                      kBlockDim,      \
                                                      x,              \
                                                      tmp_out_ptr,    \
                                                      max_chunk_num); \
210 211
  } while (0)

212 213
  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAUNCH_MULTI_TENSOR_APPLY_L2_NORM_KERNEL);
#undef PD_LAUNCH_MULTI_TENSOR_APPLY_L2_NORM_KERNEL
214

215 216
  MultiTensorL2NormReduceAgainCUDAKernel<MT, OutT, kBlockDim>
      <<<n, kBlockDim, 0, stream>>>(tmp_out_ptr, y, max_chunk_num);
217 218
}

219 220
template <int LogLevel>
static void LogParamAndTrustRatioDivSquareNorm(
221 222
    const framework::ExecutionContext &ctx,
    const float *param_square_norm,
223 224 225 226 227 228
    const float *trust_ratio_div_square_norm) {
  if (!VLOG_IS_ON(LogLevel)) return;

  auto tensors = ctx.MultiInput<framework::Tensor>("Param");
  if (tensors.empty()) return;

229 230
  const auto *order = ctx.Input<framework::Tensor>("ParamOrder")->data<int>();

231 232 233 234 235 236 237
  size_t n = tensors.size();
  auto place = tensors[0]->place();

  auto pn_vec = ToVector(param_square_norm, n, place);
  auto tn_vec = ToVector(trust_ratio_div_square_norm, n, place);

  const auto &names = ctx.GetOp().Inputs("Param");
238 239
  for (size_t i = 0; i < n; ++i) {
    auto idx = order[i];
240 241 242 243 244 245 246 247 248 249
    VLOG(LogLevel) << "Param " << tensors[idx]->dtype() << " " << names[idx]
                   << " pn = " << pn_vec[i] << " , tn = " << tn_vec[i];
  }
}

static bool IsFinite(const platform::CUDADeviceContext &dev_ctx,
                     const float *ptr) {
  auto stream = dev_ctx.stream();
  float cpu_value;
#ifdef PADDLE_WITH_HIP
250 251
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(
      &cpu_value, ptr, sizeof(float), hipMemcpyDeviceToHost, stream));
252 253
  PADDLE_ENFORCE_GPU_SUCCESS(hipStreamSynchronize(stream));
#else
254 255
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(
      &cpu_value, ptr, sizeof(float), cudaMemcpyDeviceToHost, stream));
256 257 258 259 260 261 262 263 264 265 266
  PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#endif
  LOG(INFO) << "NAN_INF indicator value: " << cpu_value;
  return isfinite(cpu_value);
}

template <typename T>
static const T *GetInputTensorPtr(const framework::ExecutionContext &ctx,
                                  const char *in_name,
                                  int64_t *numel = nullptr) {
  const auto *in_tensor = ctx.Input<framework::Tensor>(in_name);
267 268 269
  PADDLE_ENFORCE_NOT_NULL(
      in_tensor,
      platform::errors::InvalidArgument("Input(%s) cannot be NULL.", in_name));
270 271 272 273 274 275 276 277 278 279 280 281
  if (in_tensor->IsInitialized()) {
    if (numel) *numel = in_tensor->numel();
    return in_tensor->data<T>();
  } else {
    if (numel) *numel = 0;
    return nullptr;
  }
}

template <typename T, bool AllowNotExist = false>
static T *GetSameInOutTensorPtr(const framework::ExecutionContext &ctx,
                                const platform::Place &place,
282 283
                                const char *in_name,
                                const char *out_name,
284 285 286
                                int64_t *numel = nullptr) {
  const auto *in_tensor = ctx.Input<framework::Tensor>(in_name);
  if (in_tensor == nullptr || !in_tensor->IsInitialized()) {
287 288
    PADDLE_ENFORCE_EQ(AllowNotExist,
                      true,
289 290 291 292 293 294 295
                      platform::errors::InvalidArgument(
                          "Input(%s) cannot be NULL.", in_name));
    if (numel) *numel = 0;
    return nullptr;
  }

  auto *out_tensor = ctx.Output<framework::Tensor>(out_name);
296 297 298
  PADDLE_ENFORCE_NOT_NULL(
      in_tensor,
      platform::errors::InvalidArgument("Input(%s) cannot be NULL.", in_name));
299 300 301 302 303
  PADDLE_ENFORCE_NOT_NULL(out_tensor,
                          platform::errors::InvalidArgument(
                              "Output(%s) cannot be NULL.", out_name));
  const T *in_data = in_tensor->data<T>();
  T *out_data = out_tensor->mutable_data<T>(place);
304 305
  PADDLE_ENFORCE_EQ(in_data,
                    out_data,
306 307
                    platform::errors::InvalidArgument(
                        "Input(%s) and Output(%s) must be the same Tensor.",
308 309
                        in_name,
                        out_name));
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  if (numel) *numel = out_tensor->numel();
  return out_data;
}

template <typename T>
struct SquareFunctor {
  HOSTDEVICE MasterT<T> operator()(T x) const {
    auto y = static_cast<MasterT<T>>(x);
    return y * y;
  }
};

template <typename T>
struct IsNanInfFunctor {
  HOSTDEVICE bool operator()(T x) const { return !isfinite(x); }
};

struct OrFunctor {
  HOSTDEVICE bool operator()(bool x, bool y) const { return x || y; }
};

struct AndFunctor {
  HOSTDEVICE bool operator()(bool x, bool y) const { return x && y; }
};

S
sneaxiy 已提交
335
template <typename T1, typename T2, int VecSize>
336 337
static __global__ void ScaleCUDAKernel(const T1 *__restrict__ x,
                                       const T2 *__restrict__ scale,
338 339
                                       T1 *__restrict__ y,
                                       int num) {
340 341 342
  static_assert(sizeof(T1) <= sizeof(T2),
                "sizeof(T1) must be not greater than sizeof(T2).");
  T2 s = scale[0];
S
sneaxiy 已提交
343 344 345 346 347

  int i = (threadIdx.x + blockIdx.x * blockDim.x) * VecSize;
  int stride = blockDim.x * gridDim.x * VecSize;

  for (; i + VecSize <= num; i += stride) {
348 349
    phi::AlignedVector<T1, VecSize> x_vec;
    phi::AlignedVector<T1, VecSize> y_vec;
S
sneaxiy 已提交
350

351
    phi::Load(x + i, &x_vec);
S
sneaxiy 已提交
352 353 354 355
#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
      y_vec[j] = static_cast<T1>(static_cast<T2>(x_vec[j]) * s);
    }
356
    phi::Store(y_vec, y + i);
S
sneaxiy 已提交
357 358 359
  }

  for (; i < num; ++i) {
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    y[i] = static_cast<T1>(static_cast<T2>(x[i]) * s);
  }
}

template <typename T>
static __global__ void AddToCUDAKernel(const T *__restrict__ x,
                                       T *__restrict__ y) {
  y[0] += x[0];
}

// If clip before allreduce,
// coeff = global_scale * max_global_grad_norm / (1e-6 + sqrt(square_grad_norm)
// * rescale_grad)
// if coeff >= 1 or coeff is Nan/Inf, scale = 1.0
// else scale = coeff
template <typename T1, typename T2>
static __global__ void CalcGradNormClipBeforeAllReduceScale(
377 378 379 380 381 382
    const T1 *__restrict__ global_scale,
    T1 max_global_grad_norm,
    const T1 *__restrict__ square_grad_norm,
    T1 *__restrict__ out1,
    T2 *__restrict__ out2,
    T1 clip_rescale_grad) {
383
  T1 grad_norm = static_cast<T1>(sqrtf(*square_grad_norm)) * clip_rescale_grad;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  T1 scale = global_scale[0] * max_global_grad_norm / (1e-6 + grad_norm);
  bool found_nan_inf = !isfinite(scale);
  if (scale >= 1 || found_nan_inf) {
    scale = static_cast<T1>(1.0);
  }

  if (out1) {
    *out1 = scale;
  }
  if (out2) {
    *out2 = static_cast<T2>(scale);
  }
}

static __global__ void SetNanInfValueCUDAKernelOneFlag(const bool *in_flag_p,
                                                       float *out_p) {
  *out_p = (*in_flag_p) ? __int_as_float(0x7fffffffU) : 0.0f;
}

static __global__ void SetNanInfValueCUDAKernelTwoFlag(const bool *in_flag_p_1,
                                                       const bool *in_flag_p_2,
                                                       float *out_p) {
  *out_p =
      ((*in_flag_p_1) || (*in_flag_p_2)) ? __int_as_float(0x7fffffffU) : 0.0f;
}

410 411
template <typename T, typename GradT, int VecSize>
static __global__ void UpdateLambMomentAndTrustRatioDivCUDAKernel(
412 413
    const T *__restrict__ param_p,
    const GradT *__restrict__ grad_p,
414
    const T *__restrict__ square_grad_norm_p,
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    const T *__restrict__ global_scale,
    const T *__restrict__ beta1pow_p,
    const T *__restrict__ beta2pow_p,
    T *__restrict__ mom1_p,
    T *__restrict__ mom2_p,
    T *__restrict__ trust_ratio_div_p,
    bool *__restrict__ found_inf,
    int64_t *__restrict__ step,
    T weight_decay,
    int weight_decay_end_numel,
    T beta1,
    T beta2,
    T epsilon,
    T max_global_grad_norm,
    int num,
    T rescale_grad) {
431
  T square_grad_norm = *square_grad_norm_p;
432 433 434 435 436 437 438
  bool need_update_found_inf =
      (found_inf && threadIdx.x == 0 && blockIdx.x == 0);
  if (!isfinite(square_grad_norm)) {
    if (need_update_found_inf) *found_inf = true;
    return;
  } else if (need_update_found_inf) {
    *found_inf = false;
439
    ++(*step);
440
  }
441 442 443 444 445 446 447 448 449 450 451 452 453

  T scale = rescale_grad / global_scale[0];
  if (max_global_grad_norm > 0) {
    T clip_scale =
        max_global_grad_norm / (sqrtf(square_grad_norm) * scale + 1e-6);
    if (clip_scale < static_cast<T>(1)) {
      scale *= clip_scale;
    }
  }

  T one_minus_beta1pow = 1 - beta1pow_p[0];
  T one_minus_beta2pow = 1 - beta2pow_p[0];

454 455 456 457
  int i = (threadIdx.x + blockIdx.x * blockDim.x) * VecSize;
  int stride = blockDim.x * gridDim.x * VecSize;

  for (; i + VecSize <= num; i += stride) {
458 459 460 461 462
    phi::AlignedVector<T, VecSize> param_vec;
    phi::AlignedVector<GradT, VecSize> grad_vec;
    phi::AlignedVector<T, VecSize> mom1_vec;
    phi::AlignedVector<T, VecSize> mom2_vec;
    phi::AlignedVector<T, VecSize> trust_ratio_div_vec;
463 464 465

    T cur_weight_decay = (i < weight_decay_end_numel) * weight_decay;
    if (cur_weight_decay != static_cast<T>(0.0)) {
466
      phi::Load(param_p + i, &param_vec);
467 468 469 470 471 472
    } else {
#pragma unroll
      for (int j = 0; j < VecSize; ++j) {
        param_vec[j] = static_cast<T>(0);
      }
    }
473 474 475
    phi::Load(grad_p + i, &grad_vec);
    phi::Load(mom1_p + i, &mom1_vec);
    phi::Load(mom2_p + i, &mom2_vec);
476

477 478
#define PD_LAMB_MOM_TRUST_RATIO_DIV_UPDATE(                                    \
    __param, __grad, __mom1, __mom2, __trust_ratio_div, __idx)                 \
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
  T p = __param[__idx];                                                        \
  T g = static_cast<T>(__grad[__idx]) * scale;                                 \
  T mom1 = __mom1[__idx];                                                      \
  T mom2 = __mom2[__idx];                                                      \
  mom1 = beta1 * mom1 + (1 - beta1) * g;                                       \
  mom2 = beta2 * mom2 + (1 - beta2) * g * g;                                   \
  T mom1_unbiased = mom1 / one_minus_beta1pow;                                 \
  T mom2_unbiased = mom2 / one_minus_beta2pow;                                 \
  __trust_ratio_div[__idx] =                                                   \
      mom1_unbiased / (sqrtf(mom2_unbiased) + epsilon) + cur_weight_decay * p; \
  __mom1[__idx] = mom1;                                                        \
  __mom2[__idx] = mom2;

#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
494 495
      PD_LAMB_MOM_TRUST_RATIO_DIV_UPDATE(
          param_vec, grad_vec, mom1_vec, mom2_vec, trust_ratio_div_vec, j);
496 497
    }

498 499 500
    phi::Store(mom1_vec, mom1_p + i);
    phi::Store(mom2_vec, mom2_p + i);
    phi::Store(trust_ratio_div_vec, trust_ratio_div_p + i);
501 502 503 504
  }

  for (; i < num; ++i) {
    T cur_weight_decay = (i < weight_decay_end_numel) * weight_decay;
505 506
    PD_LAMB_MOM_TRUST_RATIO_DIV_UPDATE(
        param_p, grad_p, mom1_p, mom2_p, trust_ratio_div_p, i);
507 508 509
  }
}

510 511
template <typename T, typename GradT>
static void MultiTensorUpdateLambMomentAndTrustRatioDiv(
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    const platform::CUDADeviceContext &dev_ctx,
    const int *offsets,
    int n,
    const T *param_p,
    const GradT *grad_p,
    const T *square_grad_norm_p,
    const T *global_scale,
    const T *beta1pow_p,
    const T *beta2pow_p,
    T *mom1_p,
    T *mom2_p,
    T *trust_ratio_div_p,
    bool *found_inf_p,
    int64_t *step,
    T weight_decay,
    int weight_decay_end_idx,
    T beta1,
    T beta2,
    T epsilon,
    T max_global_grad_norm,
    T rescale_grad) {
533 534
  if (n <= 0) return;
  int numel = offsets[n] - offsets[0];
535 536
  PADDLE_ENFORCE_GE(weight_decay_end_idx,
                    0,
537 538
                    platform::errors::InvalidArgument(
                        "The weight decay end index should be >= 0."));
539 540
  PADDLE_ENFORCE_LE(weight_decay_end_idx,
                    n,
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
                    platform::errors::InvalidArgument(
                        "The weight decay end index should be < %d.", n));
  auto weight_decay_end_numel = offsets[weight_decay_end_idx] - offsets[0];

  int vec_size = GetChunkedVecSize(param_p, 0);
  vec_size = std::min(vec_size, GetChunkedVecSize(grad_p, 0));
  vec_size = std::min(vec_size, GetChunkedVecSize(mom1_p, 0));
  vec_size = std::min(vec_size, GetChunkedVecSize(mom2_p, 0));
  vec_size = std::min(vec_size, GetChunkedVecSize(trust_ratio_div_p, 0));
  for (int i = 0; i < n; ++i) {
    auto length = offsets[i + 1] - offsets[i];
    while (length % vec_size != 0) {
      vec_size /= 2;
    }
  }

  VLOG(1) << __func__ << " VecSize = " << vec_size;

  auto stream = dev_ctx.stream();
  auto config = platform::GetGpuLaunchConfig1D(dev_ctx, numel, vec_size);
561 562
  if (found_inf_p == nullptr) {
    PADDLE_ENFORCE_EQ(
563 564
        step,
        nullptr,
565 566 567
        platform::errors::InvalidArgument(
            "Output(Step) cannot be updated twice in one mini-batch."));
  } else {
568 569 570
    PADDLE_ENFORCE_NOT_NULL(
        step,
        platform::errors::InvalidArgument("Output(Step) cannot be nullptr."));
571
  }
572

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
#define PD_LAUNCH_LAMB_MOM_TRUST_RATIO_DIV_KERNEL                        \
  do {                                                                   \
    UpdateLambMomentAndTrustRatioDivCUDAKernel<T, GradT, kVecSize>       \
        <<<config.block_per_grid, config.thread_per_block, 0, stream>>>( \
            param_p,                                                     \
            grad_p,                                                      \
            square_grad_norm_p,                                          \
            global_scale,                                                \
            beta1pow_p,                                                  \
            beta2pow_p,                                                  \
            mom1_p,                                                      \
            mom2_p,                                                      \
            trust_ratio_div_p,                                           \
            found_inf_p,                                                 \
            step,                                                        \
            weight_decay,                                                \
            weight_decay_end_numel,                                      \
            beta1,                                                       \
            beta2,                                                       \
            epsilon,                                                     \
            max_global_grad_norm,                                        \
            numel,                                                       \
            rescale_grad);                                               \
596 597 598 599 600 601
  } while (0)

  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAUNCH_LAMB_MOM_TRUST_RATIO_DIV_KERNEL);
#undef PD_LAUNCH_LAMB_MOM_TRUST_RATIO_DIV_KERNEL
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
template <typename T, bool NeedUpdate /*=true*/>
struct LambBetaPowUpdateOnceHelper {
  LambBetaPowUpdateOnceHelper(T *beta1pow, T *beta2pow, T beta1, T beta2) {
    PADDLE_ENFORCE_NOT_NULL(beta1pow,
                            platform::errors::InvalidArgument(
                                "The beta1pow should not be nullptr."));
    PADDLE_ENFORCE_NOT_NULL(beta2pow,
                            platform::errors::InvalidArgument(
                                "The beta2pow should not be nullptr."));
    beta1pow_ = beta1pow;
    beta2pow_ = beta2pow;
    beta1_ = beta1;
    beta2_ = beta2;
  }

  HOSTDEVICE void UpdateBetaPows() const {
    beta1pow_[0] *= beta1_;
    beta2pow_[0] *= beta2_;
  }

 private:
  T *__restrict__ beta1pow_;
  T *__restrict__ beta2pow_;
  T beta1_;
  T beta2_;
};

template <typename T>
struct LambBetaPowUpdateOnceHelper<T, false> {
  LambBetaPowUpdateOnceHelper(T *beta1pow, T *beta2pow, T beta1, T beta2) {
    PADDLE_ENFORCE_EQ(
633 634
        beta1pow,
        nullptr,
635 636
        platform::errors::InvalidArgument("The beta1pow should be nullptr."));
    PADDLE_ENFORCE_EQ(
637 638
        beta2pow,
        nullptr,
639 640 641 642 643 644 645 646 647 648
        platform::errors::InvalidArgument("The beta2pow should be nullptr."));
  }

  HOSTDEVICE void UpdateBetaPows() const {}
};

template <typename T, bool HasMasterParam /*=true*/>
struct LambParamHelper {
  LambParamHelper(T *param, MasterT<T> *master_param) {
    constexpr bool kIsSameType = std::is_same<T, MasterT<T>>::value;
649 650
    PADDLE_ENFORCE_EQ(kIsSameType,
                      false,
651 652 653 654 655 656 657 658 659
                      platform::errors::InvalidArgument(
                          "T must not be the same with MasterT<T>."));
    PADDLE_ENFORCE_NOT_NULL(master_param,
                            platform::errors::InvalidArgument(
                                "Master parameter must be provided."));
    param_ = param;
    master_param_ = master_param;
  }

660
  HOSTDEVICE T *__restrict__ ParamPtr() { return param_; }
661

662
  HOSTDEVICE MasterT<T> *__restrict__ MasterParamPtr() { return master_param_; }
663 664 665 666 667 668 669 670 671 672

 private:
  T *__restrict__ param_;
  MasterT<T> *__restrict__ master_param_;
};

template <typename T>
struct LambParamHelper<T, false> {
  LambParamHelper(T *param, MasterT<T> *master_param) {
    constexpr bool kIsSameType = std::is_same<T, MasterT<T>>::value;
673 674
    PADDLE_ENFORCE_EQ(kIsSameType,
                      true,
675 676 677 678 679 680 681 682 683 684 685 686
                      platform::errors::InvalidArgument(
                          "T must be the same with MasterT<T>."));
    if (master_param != nullptr) {
      PADDLE_ENFORCE_EQ(static_cast<void *>(param),
                        static_cast<void *>(master_param),
                        platform::errors::InvalidArgument(
                            "Master parameter must be nullptr or the same as "
                            "non-master parameter."));
    }
    param_ = param;
  }

687
  HOSTDEVICE T *__restrict__ ParamPtr() { return param_; }
688

689
  HOSTDEVICE constexpr MasterT<T> *MasterParamPtr() { return nullptr; }
690 691 692 693 694

 private:
  T *__restrict__ param_;
};

695 696 697
template <typename ParamT,
          bool HasMasterParam,
          bool NeedUpdateBetaPow,
698 699 700
          int VecSize>
struct LambUpdateParamAndBetaPowsFunctor {
  DEVICE void operator()(
701 702 703 704
      int tensor_id,
      int chunk_id,
      int offset,
      int size,
705
      LambParamHelper<ParamT, HasMasterParam> param_helper,
706 707
      const MasterT<ParamT> *trust_ratio_div,
      const MasterT<ParamT> *lr,
708
      const MasterT<ParamT> *param_square_norm,
709 710
      const MasterT<ParamT> *trust_ratio_div_square_norm,
      const bool *found_inf,
711 712 713 714 715
      LambBetaPowUpdateOnceHelper<MasterT<ParamT>, NeedUpdateBetaPow>
          betapow_helper) const {
    if (*found_inf) return;

    using MT = MasterT<ParamT>;
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    MT p_square_norm = param_square_norm[tensor_id];
    MT t_square_norm = trust_ratio_div_square_norm[tensor_id];
    MT lr_value = *lr;
    MT ratio = (p_square_norm != static_cast<MT>(0) &&
                        t_square_norm != static_cast<MT>(0)
                    ? lr_value * sqrtf(p_square_norm / t_square_norm)
                    : lr_value);

    int i;
    int stride = blockDim.x * VecSize;

    ParamT *param = param_helper.ParamPtr() + offset;
    MT *master_param = HasMasterParam ? param_helper.MasterParamPtr() + offset
                                      : param_helper.MasterParamPtr();
    trust_ratio_div += offset;

    for (i = threadIdx.x * VecSize; i + VecSize <= size; i += stride) {
734 735
      phi::AlignedVector<MT, VecSize> trust_ratio_div_vec;
      phi::Load(trust_ratio_div + i, &trust_ratio_div_vec);
736
      if (HasMasterParam) {
737 738 739
        phi::AlignedVector<MT, VecSize> master_param_vec;
        phi::Load(master_param + i, &master_param_vec);
        phi::AlignedVector<ParamT, VecSize> param_vec;
740 741 742 743 744 745
#pragma unroll
        for (int j = 0; j < VecSize; ++j) {
          MT p = master_param_vec[j] - ratio * trust_ratio_div_vec[j];
          master_param_vec[j] = p;
          param_vec[j] = static_cast<ParamT>(p);
        }
746 747
        phi::Store(master_param_vec, master_param + i);
        phi::Store(param_vec, param + i);
748
      } else {
749 750
        phi::AlignedVector<ParamT, VecSize> param_vec;
        phi::Load(param + i, &param_vec);
751 752 753 754 755
#pragma unroll
        for (int j = 0; j < VecSize; ++j) {
          MT p = static_cast<MT>(param_vec[j]) - ratio * trust_ratio_div_vec[j];
          param_vec[j] = static_cast<ParamT>(p);
        }
756
        phi::Store(param_vec, param + i);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
      }
    }

    for (; i < size; ++i) {
      if (HasMasterParam) {
        MT p = master_param[i] - ratio * trust_ratio_div[i];
        master_param[i] = p;
        param[i] = static_cast<ParamT>(p);
      } else {
        MT p = static_cast<MT>(param[i]) - ratio * trust_ratio_div[i];
        param[i] = static_cast<ParamT>(p);
      }
    }

    if (NeedUpdateBetaPow && threadIdx.x == 0 && blockIdx.x == 0) {
      betapow_helper.UpdateBetaPows();
773 774
    }
  }
775
};
776

777
// TODO(zengjinle): which block_dim and chunk_size would be better?
778 779
template <typename ParamT,
          int MaxTensorNumPerLaunch = 160,
780 781
          int MaxChunkNumPerLaunch = 780>
static void MultiTensorUpdateLambParamAndBetaPows(
782 783 784 785 786
    const platform::CUDADeviceContext &dev_ctx,
    const int *offsets,
    int n,
    const MasterT<ParamT> *trust_ratio_div,
    const MasterT<ParamT> *lr,
787
    const MasterT<ParamT> *param_square_norm,
788 789 790 791 792 793 794 795
    const MasterT<ParamT> *trust_ratio_div_square_norm,
    const bool *found_inf,
    ParamT *param,
    MasterT<ParamT> *master_param,
    MasterT<ParamT> *beta1pow,
    MasterT<ParamT> *beta2pow,
    MasterT<ParamT> beta1,
    MasterT<ParamT> beta2,
796 797 798 799 800 801
    int chunk_size = 65536) {
  constexpr bool kHasMasterParam =
      !(std::is_same<ParamT, MasterT<ParamT>>::value);

  bool has_beta_pow = (beta1pow != nullptr);
  if (has_beta_pow) {
802 803 804
    PADDLE_ENFORCE_NOT_NULL(
        beta2pow,
        platform::errors::InvalidArgument("Beta2Pow should not be nullptr."));
805
  } else {
806
    PADDLE_ENFORCE_EQ(
807 808
        beta2pow,
        nullptr,
809
        platform::errors::InvalidArgument("Beta2Pow should be nullptr."));
810 811
  }

812 813 814
#ifdef PADDLE_WITH_HIP
  const int block_dim = 256;
#else
815
  const int block_dim = 512;
816
#endif
817

818 819 820 821 822 823 824 825 826 827 828 829
  int vec_size = 8;
  for (int i = 0; i < n; ++i) {
    int offset = offsets[i] - offsets[0];
    vec_size =
        std::min(vec_size, GetChunkedVecSize(param + offset, chunk_size));
    if (kHasMasterParam) {
      vec_size = std::min(vec_size,
                          GetChunkedVecSize(master_param + offset, chunk_size));
    }
    vec_size = std::min(
        vec_size, GetChunkedVecSize(trust_ratio_div + offset, chunk_size));
  }
830

831
  VLOG(1) << __func__ << " VecSize = " << vec_size;
832

833 834
  constexpr auto kNumTensor = MaxTensorNumPerLaunch;
  constexpr auto kNumChunk = MaxChunkNumPerLaunch;
835

836
  auto stream = dev_ctx.stream();
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
#define PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW(__has_beta_pow)      \
  do {                                                                   \
    using FunctorT = LambUpdateParamAndBetaPowsFunctor<ParamT,           \
                                                       kHasMasterParam,  \
                                                       __has_beta_pow,   \
                                                       kVecSize>;        \
    LambParamHelper<ParamT, kHasMasterParam> param_helper(param,         \
                                                          master_param); \
    LambBetaPowUpdateOnceHelper<MasterT<ParamT>, __has_beta_pow>         \
        betapow_helper(beta1pow, beta2pow, beta1, beta2);                \
    launcher.Launch(FunctorT(),                                          \
                    param_helper,                                        \
                    trust_ratio_div,                                     \
                    lr,                                                  \
                    param_square_norm,                                   \
                    trust_ratio_div_square_norm,                         \
                    found_inf,                                           \
                    betapow_helper);                                     \
855
  } while (0)
856

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
#define PD_LAUNCH_VEC_MULTI_TENSOR_UPDATE_PARAM_BETAPOW_CASE            \
  do {                                                                  \
    auto callback =                                                     \
        [&](const MultiTensorLauncher<kNumTensor, kNumChunk> &launcher, \
            int launch_n) {                                             \
          if (has_beta_pow && launch_n == 0) {                          \
            PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW(true);          \
            beta1pow = nullptr;                                         \
            beta2pow = nullptr;                                         \
          } else {                                                      \
            PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW(false);         \
          }                                                             \
        };                                                              \
    MultiTensorApplyWithCallback<kNumTensor, kNumChunk>(                \
        stream, offsets, n, chunk_size, block_dim, callback);           \
872 873
  } while (0)

874 875
  PD_VEC_LAUNCH_KERNEL(vec_size,
                       PD_LAUNCH_VEC_MULTI_TENSOR_UPDATE_PARAM_BETAPOW_CASE);
876

877 878
#undef PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW
#undef PD_LAUNCH_VEC_MULTI_TENSOR_UPDATE_PARAM_BETAPOW_CASE
879 880 881 882
}

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
static bool CreatePreMulScaleOpIfSupported(ncclDataType_t dtype,
883 884
                                           ncclComm_t comm,
                                           const void *scale,
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
                                           ncclRedOp_t *op) {
#if NCCL_VERSION_CODE >= 21100
  int ver;
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  if (ver >= 21100) {
    VLOG(10) << "ncclRedOpCreatePreMulSum is supported.";
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRedOpCreatePreMulSum(
        op, const_cast<void *>(scale), dtype, ncclScalarDevice, comm));
    return true;
  }
#endif
  VLOG(10) << "ncclRedOpCreatePreMulSum is not supported.";
  return false;
}

S
sneaxiy 已提交
900 901
template <typename T1, typename T2>
static void LaunchScaleKernel(const platform::CUDADeviceContext &dev_ctx,
902 903 904 905
                              const T1 *x,
                              const T2 *scale,
                              T1 *y,
                              int n,
S
sneaxiy 已提交
906 907 908 909
                              gpuStream_t stream) {
  int vec_size = std::min(GetChunkedVecSize(x, 0), GetChunkedVecSize(y, 0));
  auto config = platform::GetGpuLaunchConfig1D(dev_ctx, n, vec_size);

910 911 912 913 914
#define PD_LAMB_VEC_SCALE_KERNEL_CASE                                    \
  do {                                                                   \
    ScaleCUDAKernel<T1, T2, kVecSize>                                    \
        <<<config.block_per_grid, config.thread_per_block, 0, stream>>>( \
            x, scale, y, n);                                             \
S
sneaxiy 已提交
915 916 917 918 919 920
  } while (0)

  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAMB_VEC_SCALE_KERNEL_CASE);
#undef PD_LAMB_VEC_SCALE_KERNEL_CASE
}

921
template <typename T, bool UseReduceScatter>
922 923 924 925 926 927
static void NCCLSumWithScaleBase(const T *sendbuff,
                                 T *recvbuff,
                                 size_t recvcount,
                                 size_t nranks,
                                 ncclComm_t comm,
                                 gpuStream_t stream,
928 929
                                 const platform::CUDADeviceContext &dev_ctx,
                                 const T *scale = nullptr) {
930 931 932 933 934
  static_assert(std::is_same<T, float>::value ||
                    std::is_same<T, platform::float16>::value,
                "T must be either float32 or float16.");
  if (recvcount == 0) return;

935
  auto numel = UseReduceScatter ? (recvcount * nranks) : recvcount;
936 937
  if (comm == nullptr) {
    if (scale != nullptr) {
938 939
      PADDLE_ENFORCE_EQ(nranks,
                        1,
940 941
                        platform::errors::InvalidArgument(
                            "nranks must be 1 when scale != nullptr."));
942
      LaunchScaleKernel(dev_ctx, sendbuff, scale, recvbuff, numel, stream);
943 944 945 946 947 948 949 950 951 952 953 954
    }
    return;
  }

  ncclRedOp_t op = ncclSum;
  ncclDataType_t dtype =
      std::is_same<T, float>::value ? ncclFloat32 : ncclFloat16;
  bool should_destroy_op =
      scale && CreatePreMulScaleOpIfSupported(dtype, comm, scale, &op);
  memory::Buffer buffer(dev_ctx.GetPlace());
  if (scale && !should_destroy_op) {
    T *new_sendbuff = buffer.Alloc<T>(numel);
S
sneaxiy 已提交
955
    LaunchScaleKernel(dev_ctx, sendbuff, scale, new_sendbuff, numel, stream);
956 957 958
    sendbuff = new_sendbuff;
  }

959 960 961 962 963 964 965
  if (UseReduceScatter) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
        sendbuff, recvbuff, recvcount, dtype, op, comm, stream));
  } else {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
        sendbuff, recvbuff, recvcount, dtype, op, comm, stream));
  }
966 967 968 969 970 971 972 973 974

#if NCCL_VERSION_CODE >= 21100
  if (should_destroy_op) {
    VLOG(10) << "ncclRedOpDestroy starts";
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRedOpDestroy(op, comm));
    VLOG(10) << "ncclRedOpDestroy ends";
  }
#endif
}
975 976 977

template <typename T>
static void NCCLReduceScatterWithScale(
978 979 980 981 982 983 984 985 986 987
    const T *sendbuff,
    T *recvbuff,
    size_t recvcount,
    size_t nranks,
    ncclComm_t comm,
    gpuStream_t stream,
    const platform::CUDADeviceContext &dev_ctx,
    const T *scale = nullptr) {
  NCCLSumWithScaleBase<T, true>(
      sendbuff, recvbuff, recvcount, nranks, comm, stream, dev_ctx, scale);
988 989 990
}

template <typename T>
991 992 993 994 995 996
static void NCCLAllReduceWithScale(const T *sendbuff,
                                   T *recvbuff,
                                   size_t recvcount,
                                   size_t nranks,
                                   ncclComm_t comm,
                                   gpuStream_t stream,
997 998
                                   const platform::CUDADeviceContext &dev_ctx,
                                   const T *scale = nullptr) {
999 1000
  NCCLSumWithScaleBase<T, false>(
      sendbuff, recvbuff, recvcount, nranks, comm, stream, dev_ctx, scale);
1001 1002
}

1003 1004
#endif

1005 1006 1007
template <typename InputIteratorT,
          typename OutputIteratorT,
          typename ReduceOpT,
1008
          typename T>
1009 1010 1011 1012 1013 1014 1015
static void CubDeviceReduce(InputIteratorT d_in,
                            OutputIteratorT d_out,
                            int num_items,
                            ReduceOpT reduction_op,
                            T init,
                            gpuStream_t stream,
                            memory::Buffer *buffer) {
1016 1017
  void *d_temp_storage = nullptr;
  size_t temp_storage_bytes = 0;
1018 1019 1020 1021 1022 1023 1024 1025
  PADDLE_ENFORCE_GPU_SUCCESS(cub::DeviceReduce::Reduce(d_temp_storage,
                                                       temp_storage_bytes,
                                                       d_in,
                                                       d_out,
                                                       num_items,
                                                       reduction_op,
                                                       init,
                                                       stream));
1026 1027 1028
  d_temp_storage = buffer->Alloc<void>(temp_storage_bytes);
  VLOG(10) << "cub::DeviceReduce::Reduce needs " << temp_storage_bytes
           << " byte(s), ptr = " << d_temp_storage;
1029 1030 1031 1032 1033 1034 1035 1036
  PADDLE_ENFORCE_GPU_SUCCESS(cub::DeviceReduce::Reduce(d_temp_storage,
                                                       temp_storage_bytes,
                                                       d_in,
                                                       d_out,
                                                       num_items,
                                                       reduction_op,
                                                       init,
                                                       stream));
1037 1038 1039
}

template <typename T>
1040 1041 1042
static void GetSquareGradNormImpl(const T *grad,
                                  int n,
                                  float *square_norm,
1043 1044 1045 1046 1047
                                  gpuStream_t stream,
                                  memory::Buffer *cub_tmp_buffer) {
  using Iterator =
      cub::TransformInputIterator<float, SquareFunctor<T>, const T *>;
  Iterator iter(grad, SquareFunctor<T>());
1048 1049 1050 1051 1052 1053 1054
  CubDeviceReduce(iter,
                  square_norm,
                  n,
                  cub::Sum(),
                  static_cast<float>(0),
                  stream,
                  cub_tmp_buffer);
1055 1056 1057
}

// square_norm is of length 2 at least
1058 1059
static void GetSquareGradNorm(const float *fp32_grad,
                              int fp32_numel,
1060
                              const platform::float16 *fp16_grad,
1061 1062
                              int fp16_numel,
                              float *square_norm,
1063 1064 1065 1066 1067
                              gpuStream_t stream,
                              memory::Buffer *cub_tmp_buffer) {
  VLOG(10) << "GetSquareGradNorm starts, fp32_numel = " << fp32_numel
           << " , fp16_numel = " << fp16_numel;
  if (fp32_numel > 0) {
1068 1069
    GetSquareGradNormImpl(
        fp32_grad, fp32_numel, square_norm, stream, cub_tmp_buffer);
1070 1071 1072 1073 1074 1075
    VLOG(10) << "FP32 square L2-Norm: "
             << FlattenToString(square_norm, 1, cub_tmp_buffer->GetPlace());
  }

  if (fp16_numel > 0) {
    float *fp16_square_norm = fp32_numel > 0 ? square_norm + 1 : square_norm;
1076 1077
    GetSquareGradNormImpl(
        fp16_grad, fp16_numel, fp16_square_norm, stream, cub_tmp_buffer);
1078
    VLOG(10) << "FP16 square L2-Norm: "
1079 1080
             << FlattenToString(
                    fp16_square_norm, 1, cub_tmp_buffer->GetPlace());
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
    if (fp32_numel > 0) {
      AddToCUDAKernel<<<1, 1, 0, stream>>>(fp16_square_norm, square_norm);
      VLOG(10) << "FP32+FP16 square L2-Norm: "
               << FlattenToString(square_norm, 1, cub_tmp_buffer->GetPlace());
    }
  }
  VLOG(10) << "GetSquareGradNorm ends, fp32_numel = " << fp32_numel
           << " , fp16_numel = " << fp16_numel;
}

template <typename T>
std::string NumToString(T x) {
  std::stringstream ss;
  ss << x;
  return ss.str();
}

template <typename T>
1099 1100
static std::string GetMinMaxStr(const T *x,
                                size_t n,
1101 1102
                                const platform::Place &place) {
  PADDLE_ENFORCE_EQ(
1103 1104
      platform::is_gpu_place(place),
      true,
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
      platform::errors::InvalidArgument("Only support CUDAPlace currently."));

  auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  memory::Buffer ret_buffer(place);
  T *ret = ret_buffer.Alloc<T>(2);

  if (n > 0) {
    memory::Buffer cub_buffer(place);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    CubDeviceReduce(x,
                    ret,
                    n,
                    cub::Min(),
                    std::numeric_limits<T>::max(),
                    stream,
                    &cub_buffer);
    CubDeviceReduce(x,
                    ret + 1,
                    n,
                    cub::Max(),
                    std::numeric_limits<T>::lowest(),
                    stream,
                    &cub_buffer);
1130 1131
    T ret_cpu[2];
#ifdef PADDLE_WITH_HIP
1132 1133
    PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(
        &ret_cpu[0], ret, 2 * sizeof(T), hipMemcpyDeviceToHost, stream));
1134 1135
    PADDLE_ENFORCE_GPU_SUCCESS(hipStreamSynchronize(stream));
#else
1136 1137
    PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(
        &ret_cpu[0], ret, 2 * sizeof(T), cudaMemcpyDeviceToHost, stream));
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#endif
    return std::string("{\"min\": ") + NumToString(ret_cpu[0]) +
           " , \"max\": " + NumToString(ret_cpu[1]) + "}";
  } else {
    return "{\"min\": null, \"max\": null}";
  }
}

struct VisitDTypeFunctor {
  VisitDTypeFunctor(const framework::Tensor *x, std::string *s)
      : x_(x), s_(s) {}

  template <typename T>
  void apply() const {
    *s_ = GetMinMaxStr<T>(x_->template data<T>(), x_->numel(), x_->place());
  }

 private:
  const framework::Tensor *x_;
  std::string *s_;
};

static std::string GetMinMaxStr(const framework::Tensor *x) {
  if (x == nullptr) return "null";
  if (!x->IsInitialized()) return "not_inited";
  if (!platform::is_gpu_place(x->place())) return "CPUTensor";
  std::string str;
  VisitDTypeFunctor functor(x, &str);
1167
  phi::VisitDataType(x->dtype(), functor);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
  return str;
}

static void PrintAllMinMaxRange(const framework::ExecutionContext &ctx,
                                bool only_inputs) {
  if (!VLOG_IS_ON(1)) return;
  for (const auto &pair : ctx.GetOp().Inputs()) {
    const auto &key = pair.first;
    const auto tensors = ctx.MultiInput<framework::Tensor>(key);
    size_t n = tensors.size();
    for (size_t i = 0; i < n; ++i) {
      VLOG(1) << "Input(" << key + ")[" << i << "] = " << pair.second[i]
              << " , " << GetMinMaxStr(tensors[i]);
    }
  }

  if (only_inputs) return;
  for (const auto &pair : ctx.GetOp().Outputs()) {
    const auto &key = pair.first;
    const auto tensors = ctx.MultiOutput<framework::Tensor>(key);
    size_t n = tensors.size();
    for (size_t i = 0; i < n; ++i) {
      VLOG(1) << "Output(" << key + ")[" << i << "] = " << pair.second[i]
              << " , " << GetMinMaxStr(tensors[i]);
    }
  }
}

1196 1197
static void CheckHasNanInfGrad(const float *fp32_grad,
                               int fp32_numel,
1198
                               const platform::float16 *fp16_grad,
1199 1200
                               int fp16_numel,
                               float *nan_inf_flag,
1201 1202 1203 1204 1205 1206 1207
                               gpuStream_t stream,
                               memory::Buffer *cub_tmp_buffer) {
  bool *fp32_has_nan_inf = nullptr;
  bool *fp16_has_nan_inf = nullptr;
  if (fp32_numel > 0) {
    fp32_has_nan_inf = reinterpret_cast<bool *>(nan_inf_flag + 1);
    cub::TransformInputIterator<bool, IsNanInfFunctor<float>, const float *>
1208
        iter(fp32_grad, IsNanInfFunctor<float>());
1209 1210 1211 1212 1213 1214 1215
    CubDeviceReduce(iter,
                    fp32_has_nan_inf,
                    fp32_numel,
                    OrFunctor(),
                    false,
                    stream,
                    cub_tmp_buffer);
1216 1217 1218 1219
  }

  if (fp16_numel > 0) {
    fp16_has_nan_inf = reinterpret_cast<bool *>(nan_inf_flag + 1) + 1;
1220 1221
    cub::TransformInputIterator<bool,
                                IsNanInfFunctor<platform::float16>,
1222 1223
                                const platform::float16 *>
        iter(fp16_grad, IsNanInfFunctor<platform::float16>());
1224 1225 1226 1227 1228 1229 1230
    CubDeviceReduce(iter,
                    fp16_has_nan_inf,
                    fp16_numel,
                    OrFunctor(),
                    false,
                    stream,
                    cub_tmp_buffer);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  }

  if (fp32_has_nan_inf && fp16_has_nan_inf) {
    SetNanInfValueCUDAKernelTwoFlag<<<1, 1, 0, stream>>>(
        fp32_has_nan_inf, fp16_has_nan_inf, nan_inf_flag);
  } else if (fp32_has_nan_inf) {
    SetNanInfValueCUDAKernelOneFlag<<<1, 1, 0, stream>>>(fp32_has_nan_inf,
                                                         nan_inf_flag);
  } else {
    SetNanInfValueCUDAKernelOneFlag<<<1, 1, 0, stream>>>(fp16_has_nan_inf,
                                                         nan_inf_flag);
  }
}

1245 1246
template <typename T1, typename T2, typename T3, int VecSize>
static __global__ void ElementwiseAddWithCastCUDAKernel(const T1 *x,
1247 1248
                                                        const T2 *y,
                                                        T3 *z,
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
                                                        int n) {
  static_assert(sizeof(T1) <= sizeof(T2),
                "sizeof(T1) must be smaller than sizeof(T2).");
  using MT = MasterT<T2>;

  int i = (threadIdx.x + blockIdx.x * blockDim.x) * VecSize;
  int stride = (blockDim.x * gridDim.x) * VecSize;
  for (; i + VecSize <= n; i += stride) {
    phi::AlignedVector<T1, VecSize> x_vec;
    phi::AlignedVector<T2, VecSize> y_vec;
    phi::AlignedVector<T3, VecSize> z_vec;
    phi::Load(x + i, &x_vec);
    phi::Load(y + i, &y_vec);
#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
      auto x_tmp = static_cast<MT>(x_vec[j]);
      auto y_tmp = static_cast<MT>(y_vec[j]);
      z_vec[j] = static_cast<T3>(x_tmp + y_tmp);
    }
    phi::Store(z_vec, z + i);
  }

  for (; i < n; ++i) {
    auto x_tmp = static_cast<MT>(x[i]);
    auto y_tmp = static_cast<MT>(y[i]);
    z[i] = static_cast<T3>(x_tmp + y_tmp);
  }
}

template <typename T1, typename T2, typename T3>
static void LaunchElementwiseAddWithCastKernel(
1280 1281 1282 1283 1284 1285
    const platform::CUDADeviceContext &dev_ctx,
    const T1 *x,
    const T2 *y,
    T3 *z,
    int n,
    gpuStream_t stream) {
1286 1287 1288 1289 1290
  int vec_size =
      std::min(std::min(GetChunkedVecSize(x, 0), GetChunkedVecSize(y, 0)),
               GetChunkedVecSize(z, 0));
  auto config = platform::GetGpuLaunchConfig1D(dev_ctx, n, vec_size);

1291 1292 1293 1294 1295
#define PD_LAUNCH_ELEMENTWISE_ADD_WITH_CAST_KERNEL                       \
  do {                                                                   \
    ElementwiseAddWithCastCUDAKernel<T1, T2, T3, kVecSize>               \
        <<<config.block_per_grid, config.thread_per_block, 0, stream>>>( \
            x, y, z, n);                                                 \
1296 1297 1298 1299 1300 1301
  } while (0)

  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAUNCH_ELEMENTWISE_ADD_WITH_CAST_KERNEL);
#undef PD_LAUNCH_ELEMENTWISE_ADD_WITH_CAST_KERNEL
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
template <typename T>
class DistributedFusedLambOpKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto stream = dev_ctx.stream();
    auto place = dev_ctx.GetPlace();

1312 1313 1314
    auto *found_inf_t = ctx.Output<framework::Tensor>("FoundInf");
    found_inf_t->Resize({1});

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    // Step 1: Get fp16 param and grad tensors
    int64_t fp16_numel;
    auto *fp16_param = GetSameInOutTensorPtr<platform::float16, true>(
        ctx, place, "FP16FusedParam", "FP16FusedParamOut", &fp16_numel);
    bool has_fp16_param = (fp16_numel > 0);
    const platform::float16 *fp16_grad = nullptr;
    if (has_fp16_param) {
      fp16_grad = GetInputTensorPtr<platform::float16>(ctx, "FP16FusedGrad");
    } else {
      fp16_param = nullptr;
    }

    // Step 2: Get fp32 param and grad tensors
    int64_t fp32_numel = 0;
    auto *fp32_param = GetSameInOutTensorPtr<float, true>(
        ctx, place, "FP32FusedParam", "FP32FusedParamOut", &fp32_numel);
1331 1332
    PADDLE_ENFORCE_GE(fp32_numel,
                      fp16_numel,
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
                      platform::errors::InvalidArgument(
                          "The element number in FP32FusedParam should be not "
                          "less than FP16FusedParam."));

    fp32_numel -= fp16_numel;  // the FP32FusedParam contains fp32 param and
                               // fp16 master weight
    bool has_fp32_param = (fp32_numel > 0);
    const float *fp32_grad = nullptr;
    if (has_fp32_param) {
      fp32_grad = GetInputTensorPtr<float>(ctx, "FP32FusedGrad");
    } else {
      PADDLE_ENFORCE_EQ(
1345 1346
          has_fp16_param,
          true,
1347 1348 1349 1350 1351 1352 1353 1354 1355
          platform::errors::InvalidArgument(
              "Either FP32FusedGrad or FP16FusedGrad cannot be NULL."));
    }

    auto numel = fp32_numel + fp16_numel;
    VLOG(1) << "numel = " << numel << " , fp32_numel = " << fp32_numel
            << " , fp16_numel = " << fp16_numel;

    // The NVIDIA cub library does not support number > INT32_MAX
1356 1357
    PADDLE_ENFORCE_LE(numel,
                      std::numeric_limits<int>::max(),
1358 1359 1360 1361
                      platform::errors::Unimplemented(
                          "Too many parameter number. Only <= %d is supported.",
                          std::numeric_limits<int>::max()));

1362 1363
    auto acc_steps = ctx.Attr<int>("acc_steps");
    PADDLE_ENFORCE_GE(
1364 1365
        acc_steps,
        1,
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        platform::errors::InvalidArgument(
            "The gradient accumulation steps should be not less than 1."));
    if (acc_steps > 1) {
      auto *step_t = ctx.Output<framework::Tensor>("AccStep");
      PADDLE_ENFORCE_NOT_NULL(
          step_t,
          platform::errors::InvalidArgument(
              "Output(AccStep) cannot be nullptr when Attr(acc_steps) > 1."));
      bool is_initialized = step_t->IsInitialized();
      int64_t *step_ptr;
      if (is_initialized) {
        step_ptr = step_t->mutable_data<int64_t>(platform::CPUPlace());
        ++(*step_ptr);
      } else {
        step_t->Resize({1});
        step_ptr = step_t->mutable_data<int64_t>(platform::CPUPlace());
        *step_ptr = 1;
      }
      int64_t rounded_step = (*step_ptr) % acc_steps;

      float *fp32_acc_grad = nullptr;
      if (has_fp32_param) {
        auto *fp32_acc_grad_t =
            ctx.Output<framework::Tensor>("FP32AccFusedGrad");
        PADDLE_ENFORCE_NOT_NULL(
1391 1392 1393 1394
            fp32_acc_grad_t,
            platform::errors::InvalidArgument(
                "Output(FP32AccFusedGrad) cannot be nullptr "
                "when Attr(acc_steps) > 1."));
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        if (!fp32_acc_grad_t->IsInitialized()) {
          fp32_acc_grad_t->Resize({static_cast<int64_t>(fp32_numel)});
          fp32_acc_grad = fp32_acc_grad_t->mutable_data<float>(place);
        } else {
          fp32_acc_grad = fp32_acc_grad_t->data<float>();
        }
      }

      platform::float16 *fp16_acc_grad = nullptr;
      float *master_acc_grad = nullptr;
1405
      bool use_master_acc_grad = false;
1406
      if (has_fp16_param) {
1407
        use_master_acc_grad = ctx.Attr<bool>("use_master_acc_grad");
1408 1409 1410
        auto *fp16_acc_grad_t =
            ctx.Output<framework::Tensor>("FP16AccFusedGrad");
        PADDLE_ENFORCE_NOT_NULL(
1411 1412 1413 1414
            fp16_acc_grad_t,
            platform::errors::InvalidArgument(
                "Output(FP16AccFusedGrad) cannot be nullptr "
                "when Attr(acc_steps) > 1."));
1415
        if (!fp16_acc_grad_t->IsInitialized()) {
1416 1417 1418
          auto acc_grad_size =
              use_master_acc_grad ? (3 * fp16_numel) : fp16_numel;
          fp16_acc_grad_t->Resize({static_cast<int64_t>(acc_grad_size)});
1419 1420 1421 1422 1423
          fp16_acc_grad =
              fp16_acc_grad_t->mutable_data<platform::float16>(place);
        } else {
          fp16_acc_grad = fp16_acc_grad_t->data<platform::float16>();
        }
1424 1425 1426 1427
        if (use_master_acc_grad) {
          master_acc_grad =
              reinterpret_cast<float *>(fp16_acc_grad + fp16_numel);
        }
1428 1429 1430 1431 1432
      }

      // Inplace addto
      if (has_fp32_param) {
        if (rounded_step == 1) {
1433 1434 1435 1436 1437 1438
          memory::Copy(place,
                       fp32_acc_grad,
                       place,
                       fp32_grad,
                       fp32_numel * sizeof(float),
                       stream);
1439
        } else {
1440 1441 1442 1443 1444 1445
          LaunchElementwiseAddWithCastKernel(dev_ctx,
                                             fp32_grad,
                                             fp32_acc_grad,
                                             fp32_acc_grad,
                                             fp32_numel,
                                             stream);
1446 1447 1448 1449
        }
      }

      if (has_fp16_param) {
1450 1451
        if (acc_steps == 2 || !use_master_acc_grad) {
          if (rounded_step != 1) {
1452 1453 1454 1455 1456 1457
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_acc_grad,
                                               fp16_grad,
                                               fp16_acc_grad,
                                               fp16_numel,
                                               stream);
1458
          } else {
1459 1460 1461 1462 1463 1464
            memory::Copy(place,
                         fp16_acc_grad,
                         place,
                         fp16_grad,
                         fp16_numel * sizeof(platform::float16),
                         stream);
1465 1466 1467
          }
        } else {  // acc_steps >= 3
          if (rounded_step == 0) {
1468 1469 1470 1471 1472 1473
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_grad,
                                               master_acc_grad,
                                               fp16_acc_grad,
                                               fp16_numel,
                                               stream);
1474
          } else if (rounded_step == 1) {
1475 1476 1477 1478 1479 1480
            memory::Copy(place,
                         fp16_acc_grad,
                         place,
                         fp16_grad,
                         fp16_numel * sizeof(platform::float16),
                         stream);
1481
          } else if (rounded_step == 2) {
1482 1483 1484 1485 1486 1487
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_grad,
                                               fp16_acc_grad,
                                               master_acc_grad,
                                               fp16_numel,
                                               stream);
1488
          } else {
1489 1490 1491 1492 1493 1494
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_grad,
                                               master_acc_grad,
                                               master_acc_grad,
                                               fp16_numel,
                                               stream);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
          }
        }
      }

      auto *stop_update_t = ctx.Output<framework::Tensor>("StopUpdate");
      stop_update_t->Resize({1});
      auto *stop_update =
          stop_update_t->mutable_data<bool>(platform::CPUPlace());

      auto *found_inf_cpu =
          found_inf_t->mutable_data<bool>(platform::CPUPlace());

      if (rounded_step != 0) {
        *stop_update = true;
        auto *found_inf_cpu =
            found_inf_t->mutable_data<bool>(platform::CPUPlace());
        *found_inf_cpu = false;
        return;
      } else {
        // swap pointer
        fp32_grad = fp32_acc_grad;
        fp16_grad = fp16_acc_grad;
        *stop_update = false;
        found_inf_t->clear();
      }
    }

1522
    // Step 3: Get ParamInfo
1523 1524 1525 1526
    const auto *param_info_tensor = GetInputTensorPtr<int>(ctx, "ParamInfo");
    auto fp32_local_start_idx = param_info_tensor[0];
    auto fp32_local_param_num = param_info_tensor[1];
    auto fp32_global_param_num = param_info_tensor[2];
1527 1528 1529 1530 1531
    auto fp32_weight_decay_end_idx = param_info_tensor[3];
    auto fp16_local_start_idx = param_info_tensor[4];
    auto fp16_local_param_num = param_info_tensor[5];
    auto fp16_global_param_num = param_info_tensor[6];
    auto fp16_weight_decay_end_idx = param_info_tensor[7];
1532 1533 1534

    auto local_param_num = fp32_local_param_num + fp16_local_param_num;
    auto param_num = fp32_global_param_num + fp16_global_param_num;
1535 1536
    PADDLE_ENFORCE_LE(local_param_num,
                      param_num,
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
                      platform::errors::InvalidArgument(
                          "The local parameter number should not exceed the "
                          "global parameter number."));
    VLOG(1) << "local_param_num = " << local_param_num
            << " , global_param_num = " << param_num
            << " , fp32_local_start_idx = " << fp32_local_start_idx
            << " , fp32_local_param_num = " << fp32_local_param_num
            << " , fp32_global_param_num = " << fp32_global_param_num
            << " , fp16_local_start_idx = " << fp16_local_start_idx
            << " , fp16_local_param_num = " << fp16_local_param_num
            << " , fp16_global_param_num = " << fp16_global_param_num;

    // Step 4: Get LearningRate, Moment1, Moment2, Beta1Pow, Beta2Pow,
1550
    // GlobalScale
1551 1552 1553
    const auto *global_scale = GetInputTensorPtr<float>(ctx, "GlobalScale");
    const auto *lr = GetInputTensorPtr<float>(ctx, "LearningRate");
    int64_t partial_numel = 0;
1554 1555
    auto *moment1 = GetSameInOutTensorPtr<float>(
        ctx, place, "Moment1", "Moment1Out", &partial_numel);
1556

1557 1558
    PADDLE_ENFORCE_EQ(numel % partial_numel,
                      0,
1559 1560 1561
                      platform::errors::InvalidArgument(
                          "The total parameter number %d should be divided "
                          "exactly by the element number %d of Moment1.",
1562 1563
                          numel,
                          partial_numel));
1564

1565 1566 1567
    // The num_devices means the number of devices that shard a complete set
    // of all parameters. It may be num_devices < nranks or num_devices ==
    // nranks.
1568 1569 1570 1571
    int64_t num_devices = numel / partial_numel;
    VLOG(1) << "num_devices = " << num_devices
            << " , partial_numel = " << partial_numel;

1572 1573
    PADDLE_ENFORCE_EQ(fp32_numel % num_devices,
                      0,
1574 1575 1576
                      platform::errors::InvalidArgument(
                          "The fp32 parameter number %d should be divided "
                          "exactly by the device number %d.",
1577 1578 1579 1580
                          fp32_numel,
                          num_devices));
    PADDLE_ENFORCE_EQ(fp16_numel % num_devices,
                      0,
1581 1582 1583
                      platform::errors::InvalidArgument(
                          "The fp16 parameter number %d should be divided "
                          "exactly by the device number %d.",
1584 1585
                          fp16_numel,
                          num_devices));
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

    auto *moment2 =
        GetSameInOutTensorPtr<float>(ctx, place, "Moment2", "Moment2Out");
    auto *beta1pow =
        GetSameInOutTensorPtr<float>(ctx, place, "Beta1Pow", "Beta1PowOut");
    auto *beta2pow =
        GetSameInOutTensorPtr<float>(ctx, place, "Beta2Pow", "Beta2PowOut");

    auto *found_inf = found_inf_t->mutable_data<bool>(place);

1596 1597
    // Step 5: Get attributes weight_decay, beta1, beta2, epsilon,
    // max_grad_norm, ring_id,
1598
    // use_master_param_norm, is_grad_scaled_by_nranks
1599
    auto weight_decay = ctx.Attr<float>("weight_decay");
1600 1601 1602 1603 1604
    auto beta1 = ctx.Attr<float>("beta1");
    auto beta2 = ctx.Attr<float>("beta2");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto max_global_grad_norm = ctx.Attr<float>("max_global_grad_norm");
    auto clip_after_allreduce = ctx.Attr<bool>("clip_after_allreduce");
1605
    auto nranks = ctx.Attr<int64_t>("nranks");
1606 1607
    PADDLE_ENFORCE_GE(nranks,
                      num_devices,
1608 1609 1610
                      phi::errors::InvalidArgument(
                          "The nranks must be not less than num_devices."));
    PADDLE_ENFORCE_EQ(
1611 1612
        nranks % num_devices,
        0,
1613 1614 1615 1616 1617
        phi::errors::InvalidArgument(
            "The nranks must be exactly divided by num_devices."));
    bool local_shard = (nranks > num_devices);

    const auto &ring_ids = ctx.Attr<std::vector<int>>("ring_id");
1618 1619 1620 1621 1622
    auto use_master_param_norm = ctx.Attr<bool>("use_master_param_norm");
    auto is_grad_scaled_by_nranks = ctx.Attr<bool>("is_grad_scaled_by_nranks");
    VLOG(10) << "max_global_grad_norm = " << max_global_grad_norm
             << " , clip_after_allreduce = " << clip_after_allreduce
             << " , use_master_param_norm = " << use_master_param_norm
1623 1624
             << " , is_grad_scaled_by_nranks = " << is_grad_scaled_by_nranks
             << " , local_shard = " << local_shard;
1625 1626

    // Step 6: allreduce + global norm gradient clip
1627
    int64_t global_rank = 0, local_rank = 0;
S
sneaxiy 已提交
1628
    ncclComm_t global_comm = nullptr, local_comm = nullptr;
1629
    if (nranks > 1) {
1630
      auto *nccl_comm_handle =
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
          platform::NCCLCommContext::Instance().Get(ring_ids[0], place);
      global_comm = nccl_comm_handle->comm();
      global_rank = nccl_comm_handle->rank();

      if (local_shard) {
        auto *local_nccl_comm_handle =
            platform::NCCLCommContext::Instance().Get(ring_ids[1], place);
        local_comm = local_nccl_comm_handle->comm();
        local_rank = local_nccl_comm_handle->rank();
      } else {
        local_comm = global_comm;
        local_rank = global_rank;
      }
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    }

    memory::Buffer grad_norm_square_buffer(place);
    auto *fp32_square_grad_norm = grad_norm_square_buffer.Alloc<float>(2);
    memory::Buffer cub_tmp_buffer(place);

    memory::Buffer sum_grad_buffer(place);
    float *fp32_sum_grad;
    platform::float16 *fp16_sum_grad;
    auto fp32_numel_each_device = fp32_numel / num_devices;
    auto fp16_numel_each_device = fp16_numel / num_devices;
1655 1656 1657 1658 1659 1660 1661 1662 1663
    if (local_shard) {
      auto ptr = sum_grad_buffer.Alloc<uint8_t>(
          fp32_numel * sizeof(float) + fp16_numel * sizeof(platform::float16));
      fp32_sum_grad = has_fp32_param ? reinterpret_cast<float *>(ptr) : nullptr;
      fp16_sum_grad = has_fp16_param ? reinterpret_cast<platform::float16 *>(
                                           ptr + fp32_numel * sizeof(float))
                                     : nullptr;
    } else if (nranks > 1 ||
               (max_global_grad_norm > 0 && !clip_after_allreduce)) {
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
      auto ptr = sum_grad_buffer.Alloc<uint8_t>(
          fp32_numel_each_device * sizeof(float) +
          fp16_numel_each_device * sizeof(platform::float16));
      fp32_sum_grad = has_fp32_param ? reinterpret_cast<float *>(ptr) : nullptr;
      fp16_sum_grad = has_fp16_param
                          ? reinterpret_cast<platform::float16 *>(
                                ptr + fp32_numel_each_device * sizeof(float))
                          : nullptr;
    } else {
      // NOTE: The const_cast here is not important. The fp32_sum_grad and
      // fp16_sum_grad would not be changed when num_devices == 1
      // But if I do not perform const_cast here, there would be more
      // if-else codes (num_devices > 1) when I write the following code.
      // So I prefer to use const_cast to unify the following code to reduce
      // the if-else codes.
      fp32_sum_grad = const_cast<float *>(fp32_grad);
      fp16_sum_grad = const_cast<platform::float16 *>(fp16_grad);
    }

    float rescale_grad = 1.0f;
    if (!is_grad_scaled_by_nranks) {
1685
      rescale_grad /= nranks;
1686 1687 1688 1689 1690
    }

    if (max_global_grad_norm > 0) {
      if (clip_after_allreduce) {
        // (1) ReduceScater first
1691
        if (local_shard) {
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
          NCCLAllReduceWithScale(fp32_grad,
                                 fp32_sum_grad,
                                 fp32_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx);
          NCCLAllReduceWithScale(fp16_grad,
                                 fp16_sum_grad,
                                 fp16_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx);
1706 1707 1708
          fp32_sum_grad += (local_rank * fp32_numel_each_device);
          fp16_sum_grad += (local_rank * fp16_numel_each_device);
        } else {
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
          NCCLReduceScatterWithScale(fp32_grad,
                                     fp32_sum_grad,
                                     fp32_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx);
          NCCLReduceScatterWithScale(fp16_grad,
                                     fp16_sum_grad,
                                     fp16_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx);
1723
        }
1724
        // (2) Calculate the global grad norm
1725 1726 1727 1728 1729 1730
        GetSquareGradNorm(fp32_sum_grad,
                          fp32_numel_each_device,
                          fp16_sum_grad,
                          fp16_numel_each_device,
                          fp32_square_grad_norm,
                          stream,
1731 1732 1733 1734
                          &cub_tmp_buffer);
        VLOG(1) << "Grad square norm before all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
        if (num_devices > 1) {
1735 1736 1737 1738 1739 1740 1741 1742
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::ncclAllReduce(fp32_square_grad_norm,
                                               fp32_square_grad_norm,
                                               1,
                                               ncclFloat32,
                                               ncclSum,
                                               local_comm,
                                               stream));
1743 1744 1745 1746 1747
        }
        VLOG(1) << "Grad square norm after all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
      } else {
        // (1) Calculate the local grad norm
1748 1749 1750 1751 1752 1753 1754
        GetSquareGradNorm(fp32_grad,
                          fp32_numel,
                          fp16_grad,
                          fp16_numel,
                          fp32_square_grad_norm,
                          stream,
                          &cub_tmp_buffer);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
        VLOG(1) << "Grad square norm before all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
        // (2) Calculate the gradient clip scale
        float *fp32_scale = nullptr;
        platform::float16 *fp16_scale = nullptr;
        if (has_fp32_param && has_fp16_param) {
          auto *ptr = cub_tmp_buffer.Alloc<uint8_t>(sizeof(float) +
                                                    sizeof(platform::float16));
          fp32_scale = reinterpret_cast<float *>(ptr);
          fp16_scale =
              reinterpret_cast<platform::float16 *>(ptr + sizeof(float));
        } else if (has_fp32_param) {
          fp32_scale = cub_tmp_buffer.Alloc<float>(1);
        } else {
          fp16_scale = cub_tmp_buffer.Alloc<platform::float16>(1);
        }

        float clip_scale = 1.0f;
        if (is_grad_scaled_by_nranks) {
1774
          clip_scale *= nranks;
1775
        }
1776
        CalcGradNormClipBeforeAllReduceScale<float, platform::float16>
1777 1778 1779 1780 1781
            <<<1, 1, 0, stream>>>(global_scale,
                                  max_global_grad_norm,
                                  fp32_square_grad_norm,
                                  fp32_scale,
                                  fp16_scale,
1782
                                  clip_scale);
1783 1784 1785 1786 1787
        if (fp32_scale) {
          VLOG(1) << "Grad scale: " << FlattenToString(fp32_scale, 1, place);
        } else {
          VLOG(1) << "Grad scale: " << FlattenToString(fp16_scale, 1, place);
        }
1788
        if (nranks > 1) {
1789 1790 1791 1792 1793 1794 1795 1796
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::ncclAllReduce(fp32_square_grad_norm,
                                               fp32_square_grad_norm,
                                               1,
                                               ncclFloat32,
                                               ncclSum,
                                               global_comm,
                                               stream));
1797 1798
        }
        // (3) Do ReduceScatter with scale
1799
        if (local_shard) {
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
          NCCLAllReduceWithScale(fp32_grad,
                                 fp32_sum_grad,
                                 fp32_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx,
                                 fp32_scale);
          NCCLAllReduceWithScale(fp16_grad,
                                 fp16_sum_grad,
                                 fp16_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx,
                                 fp16_scale);
1816 1817 1818
          fp32_sum_grad += (local_rank * fp32_numel_each_device);
          fp16_sum_grad += (local_rank * fp16_numel_each_device);
        } else {
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
          NCCLReduceScatterWithScale(fp32_grad,
                                     fp32_sum_grad,
                                     fp32_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx,
                                     fp32_scale);
          NCCLReduceScatterWithScale(fp16_grad,
                                     fp16_sum_grad,
                                     fp16_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx,
                                     fp16_scale);
1835
        }
1836 1837 1838 1839 1840
        // (4) mark max_global_grad_norm as 0, meaning that clip has been
        // already performed
        max_global_grad_norm = 0;
      }
    } else {
1841
      if (local_shard) {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        NCCLAllReduceWithScale(fp32_grad,
                               fp32_sum_grad,
                               fp32_numel,
                               nranks,
                               global_comm,
                               stream,
                               dev_ctx);
        NCCLAllReduceWithScale(fp16_grad,
                               fp16_sum_grad,
                               fp16_numel,
                               nranks,
                               global_comm,
                               stream,
                               dev_ctx);
1856 1857 1858
        fp32_sum_grad += (local_rank * fp32_numel_each_device);
        fp16_sum_grad += (local_rank * fp16_numel_each_device);
      } else {
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
        NCCLReduceScatterWithScale(fp32_grad,
                                   fp32_sum_grad,
                                   fp32_numel_each_device,
                                   num_devices,
                                   global_comm,
                                   stream,
                                   dev_ctx);
        NCCLReduceScatterWithScale(fp16_grad,
                                   fp16_sum_grad,
                                   fp16_numel_each_device,
                                   num_devices,
                                   global_comm,
                                   stream,
                                   dev_ctx);
1873
      }
1874 1875 1876 1877 1878 1879
      CheckHasNanInfGrad(fp32_sum_grad,
                         fp32_numel_each_device,
                         fp16_sum_grad,
                         fp16_numel_each_device,
                         fp32_square_grad_norm,
                         stream,
1880 1881
                         &cub_tmp_buffer);
      if (num_devices > 1) {
1882 1883 1884 1885 1886 1887 1888 1889
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllReduce(fp32_square_grad_norm,
                                             fp32_square_grad_norm,
                                             1,
                                             ncclFloat32,
                                             ncclSum,
                                             local_comm,
                                             stream));
1890 1891 1892 1893 1894 1895
      }
      max_global_grad_norm = 0;
    }
    VLOG(10) << "ReduceScatter done";

    // Step 7: update the moment1, moment2. Calcuate the trust_ratio_div
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
    auto *fused_offsets_t = ctx.Input<framework::Tensor>("FusedParamOffsets");
    auto *fused_offsets = fused_offsets_t->data<int>();
    auto *fp32_partial_fused_offsets_t =
        ctx.Input<framework::Tensor>("FP32ShardFusedParamOffsets");
    const auto *fp32_partial_fused_offsets =
        fp32_partial_fused_offsets_t->data<int>();
    auto *fp16_partial_fused_offsets_t =
        ctx.Input<framework::Tensor>("FP16ShardFusedParamOffsets");
    const auto *fp16_partial_fused_offsets =
        fp16_partial_fused_offsets_t->data<int>();

1907 1908
    auto *step = ctx.Output<framework::Tensor>("Step")->data<int64_t>();

1909
    VLOG(1) << "FusedParamOffsets: "
1910 1911
            << FlattenToString(fused_offsets,
                               fused_offsets_t->numel(),
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
                               fused_offsets_t->place());
    VLOG(1) << "FP32ShardFusedParamOffsets: "
            << FlattenToString(fp32_partial_fused_offsets,
                               fp32_partial_fused_offsets_t->numel(),
                               fp32_partial_fused_offsets_t->place());
    VLOG(1) << "FP16ShardFusedParamOffsets: "
            << FlattenToString(fp16_partial_fused_offsets,
                               fp16_partial_fused_offsets_t->numel(),
                               fp16_partial_fused_offsets_t->place());

1922 1923
    memory::Buffer trust_ratio_div_buffer(place);
    auto *trust_ratio_div = trust_ratio_div_buffer.Alloc<float>(partial_numel);
1924 1925
    auto fp32_offset = local_rank * fp32_numel_each_device;
    auto fp16_offset = local_rank * fp16_numel_each_device;
1926 1927
    if (has_fp32_param) {
      VLOG(10) << "Update FP32 Moment and TrustRatioDiv starts";
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
      MultiTensorUpdateLambMomentAndTrustRatioDiv(dev_ctx,
                                                  fp32_partial_fused_offsets,
                                                  fp32_local_param_num,
                                                  fp32_param + fp32_offset,
                                                  fp32_sum_grad,
                                                  fp32_square_grad_norm,
                                                  global_scale,
                                                  beta1pow,
                                                  beta2pow,
                                                  moment1,
                                                  moment2,
                                                  trust_ratio_div,
                                                  found_inf,
                                                  step,
                                                  weight_decay,
                                                  fp32_weight_decay_end_idx,
                                                  beta1,
                                                  beta2,
                                                  epsilon,
                                                  max_global_grad_norm,
                                                  rescale_grad);
1949 1950 1951 1952 1953 1954
      VLOG(10) << "Update FP32 Moment and TrustRatioDiv done";
    }
    float *master_param = nullptr;
    if (has_fp16_param) {
      master_param = fp32_param + fp32_numel;
      VLOG(10) << "Update FP16 Moment and TrustRatioDiv starts";
1955
      auto tmp_found_inf = has_fp32_param ? nullptr : found_inf;
1956
      auto tmp_step = has_fp32_param ? nullptr : step;
1957
      MultiTensorUpdateLambMomentAndTrustRatioDiv(
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
          dev_ctx,
          fp16_partial_fused_offsets,
          fp16_local_param_num,
          master_param + fp16_offset,
          fp16_sum_grad,
          fp32_square_grad_norm,
          global_scale,
          beta1pow,
          beta2pow,
          moment1 + fp32_numel_each_device,
1968
          moment2 + fp32_numel_each_device,
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
          trust_ratio_div + fp32_numel_each_device,
          tmp_found_inf,
          tmp_step,
          weight_decay,
          fp16_weight_decay_end_idx,
          beta1,
          beta2,
          epsilon,
          max_global_grad_norm,
          rescale_grad);
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
      VLOG(10) << "Update FP16 Moment and TrustRatioDiv done";
    }

    VLOG(10) << "Update Moment and TrustRatioDiv done hehahaha";

    // Step 8: calculate L2-Norm square of parameter and trust_ratio_div
    memory::Buffer square_norm_buffer(place);
    auto *param_square_norm = square_norm_buffer.Alloc<float>(2 * param_num);
    auto *trust_ratio_div_square_norm = param_square_norm + param_num;
    if (num_devices > 1) {
      if (use_master_param_norm) {
        FillZeroWithPtr(param_square_norm + fp32_global_param_num,
1991 1992
                        2 * param_num - fp32_global_param_num,
                        stream);
1993 1994 1995 1996
      } else {
        FillZeroWithPtr(trust_ratio_div_square_norm, param_num, stream);
      }
    }
1997 1998 1999 2000 2001 2002
    MultiTensorL2Norm(place,
                      stream,
                      fp32_param,
                      fused_offsets,
                      fp32_global_param_num,
                      param_square_norm);
2003
    if (use_master_param_norm) {
2004 2005 2006 2007 2008
      MultiTensorL2Norm(place,
                        stream,
                        master_param + fp16_offset,
                        fp16_partial_fused_offsets,
                        fp16_local_param_num,
2009
                        param_square_norm + fp16_local_start_idx);
2010
    } else {
2011 2012
      MultiTensorL2Norm(place,
                        stream,
2013 2014 2015 2016 2017
                        fp16_param + fused_offsets[fp16_local_start_idx] -
                            fused_offsets[fp32_global_param_num],
                        fused_offsets + fp16_local_start_idx,
                        fp16_local_param_num,
                        param_square_norm + fp16_local_start_idx);
2018 2019
    }

2020 2021 2022 2023 2024
    MultiTensorL2Norm(place,
                      stream,
                      trust_ratio_div,
                      fp32_partial_fused_offsets,
                      fp32_local_param_num,
2025
                      trust_ratio_div_square_norm + fp32_local_start_idx);
2026 2027 2028 2029 2030
    MultiTensorL2Norm(place,
                      stream,
                      trust_ratio_div + fp32_numel_each_device,
                      fp16_partial_fused_offsets,
                      fp16_local_param_num,
2031
                      trust_ratio_div_square_norm + fp16_local_start_idx);
2032 2033 2034 2035 2036 2037 2038 2039

    VLOG(1) << "TrustRatioDiv L2-Norm before allreduce: "
            << FlattenToString(trust_ratio_div_square_norm, param_num, place);
    if (num_devices > 1) {
      if (use_master_param_norm) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
            param_square_norm + fp32_global_param_num,
            param_square_norm + fp32_global_param_num,
2040 2041 2042 2043 2044
            2 * param_num - fp32_global_param_num,
            ncclFloat32,
            ncclSum,
            local_comm,
            stream));
2045
      } else {
2046 2047 2048 2049 2050 2051 2052 2053
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllReduce(trust_ratio_div_square_norm,
                                             trust_ratio_div_square_norm,
                                             param_num,
                                             ncclFloat32,
                                             ncclSum,
                                             local_comm,
                                             stream));
2054 2055 2056 2057
      }
      VLOG(10) << "ncclAllReduce done";
    }

2058 2059
    LogParamAndTrustRatioDivSquareNorm<1>(
        ctx, param_square_norm, trust_ratio_div_square_norm);
2060 2061 2062 2063
    VLOG(10) << "Calculate L2-Norm of Param and TrustRatioDiv done";

    // Step 9: update parameter, beta1pow, beta2pow. All gather parameters.
    if (has_fp32_param) {
2064
      MultiTensorUpdateLambParamAndBetaPows<float>(
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
          dev_ctx,
          fp32_partial_fused_offsets,
          fp32_local_param_num,
          trust_ratio_div,
          lr,
          param_square_norm + fp32_local_start_idx,
          trust_ratio_div_square_norm + fp32_local_start_idx,
          found_inf,
          fp32_param + fp32_offset,
          nullptr,
          beta1pow,
          beta2pow,
          beta1,
          beta2);
2079 2080
      if (num_devices > 1) {
        // ncclAllGather
2081 2082 2083 2084 2085 2086 2087
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllGather(fp32_param + fp32_offset,
                                             fp32_param,
                                             fp32_numel_each_device,
                                             ncclFloat32,
                                             local_comm,
                                             stream));
2088
      }
2089 2090 2091

      beta1pow = nullptr;
      beta2pow = nullptr;
2092 2093
    }
    if (has_fp16_param) {
2094
      MultiTensorUpdateLambParamAndBetaPows<platform::float16>(
2095 2096 2097 2098 2099
          dev_ctx,
          fp16_partial_fused_offsets,
          fp16_local_param_num,
          trust_ratio_div + fp32_numel_each_device,
          lr,
2100
          param_square_norm + fp16_local_start_idx,
2101 2102 2103 2104 2105 2106 2107 2108
          trust_ratio_div_square_norm + fp16_local_start_idx,
          found_inf,
          fp16_param + fp16_offset,
          master_param + fp16_offset,
          beta1pow,
          beta2pow,
          beta1,
          beta2);
2109 2110
      if (num_devices > 1) {
        // ncclAllGather
2111 2112 2113 2114 2115 2116 2117
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllGather(fp16_param + fp16_offset,
                                             fp16_param,
                                             fp16_numel_each_device,
                                             ncclFloat16,
                                             local_comm,
                                             stream));
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
      }
    }
    VLOG(10) << "Update Param done";

    VLOG(1) << "IsFinite: " << IsFinite(dev_ctx, fp32_square_grad_norm);
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "distributed_fused_lamb op should be used with NCCL/RCCL."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
    distributed_fused_lamb,
    ops::DistributedFusedLambOpKernel<plat::CUDADeviceContext, float>);