distributed_fused_lamb_op.cu 82.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cmath>
16

17
#include "paddle/fluid/memory/buffer.h"
18
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
19 20
#include "paddle/fluid/operators/optimizers/cast_with_ptr.h"
#include "paddle/fluid/operators/optimizers/distributed_fused_lamb_op.h"
21
#include "paddle/fluid/operators/optimizers/multi_tensor_apply.h"
22 23 24 25
#include "paddle/fluid/operators/tensor_to_string.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/fluid/string/string_helper.h"
26
#include "paddle/phi/core/utils/data_type.h"
27
#include "paddle/phi/kernels/funcs/aligned_vector.h"
28 29 30 31 32 33 34 35

#ifdef __NVCC__
#include "cub/cub.cuh"
#include "math.h"  // NOLINT
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
36

37 38 39 40 41 42 43 44 45 46
#include "math.h"  // NOLINT
namespace cub = hipcub;
#endif

namespace paddle {
namespace operators {

template <typename T>
using MasterT = typename details::MPTypeTrait<T>::Type;

47 48 49 50 51 52 53 54 55 56 57 58
template <typename T>
static void FillZeroWithPtr(T *x, size_t n, gpuStream_t stream) {
  static_assert(!std::is_same<T, void>::value, "T cannot be void.");
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemsetAsync(x, 0, n * sizeof(T), stream));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(x, 0, n * sizeof(T), stream));
#endif
}

template <typename T, int BlockDim, int VecSize>
struct L2NormFunctor {
59 60 61 62 63 64 65
  DEVICE void operator()(int tensor_id,
                         int chunk_id,
                         int offset,
                         int size,
                         const T *x,
                         MasterT<T> *y,
                         int max_chunk_num) const {
66 67 68 69 70 71 72 73 74 75
    using MT = MasterT<T>;
    const T *ptr = x + offset;

    using BlockReduce = cub::BlockReduce<MT, BlockDim>;
    __shared__ typename BlockReduce::TempStorage storage;

    MT square_sum = static_cast<MT>(0);
    int i;
    for (i = threadIdx.x * VecSize; i + VecSize <= size;
         i += (BlockDim * VecSize)) {
76 77
      phi::AlignedVector<T, VecSize> tmp_vec;
      phi::Load(ptr + i, &tmp_vec);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#pragma unroll
      for (int j = 0; j < VecSize; ++j) {
        auto tmp = static_cast<MT>(tmp_vec[j]);
        square_sum += (tmp * tmp);
      }
    }

    for (; i < size; ++i) {
      auto tmp = static_cast<MT>(ptr[i]);
      square_sum += (tmp * tmp);
    }

    square_sum = BlockReduce(storage).Reduce(square_sum, cub::Sum());
    if (threadIdx.x == 0) {
      y[tensor_id * max_chunk_num + chunk_id] = square_sum;
    }
  }
};

97
template <typename InT, typename OutT, int BlockDim>
98 99 100 101 102 103 104 105 106 107 108 109
static __global__ void MultiTensorL2NormReduceAgainCUDAKernel(
    const InT *x, OutT *y, int max_chunk_num) {
  int tensor_id = blockIdx.x;
  x += (tensor_id * max_chunk_num);
  using BlockReduce = cub::BlockReduce<InT, BlockDim>;
  __shared__ typename BlockReduce::TempStorage storage;
  InT sum = static_cast<InT>(0);
  for (int i = threadIdx.x; i < max_chunk_num; i += BlockDim) {
    sum += x[i];
  }
  sum = BlockReduce(storage).Reduce(sum, cub::Sum());
  if (threadIdx.x == 0) {
110
    y[blockIdx.x] = static_cast<OutT>(sum);
111 112 113 114 115 116 117 118 119 120
  }
}

template <typename T>
static int GetChunkedVecSize(const T *ptr, int chunk_size) {
  static_assert(!std::is_same<T, void>::value, "T cannot be void.");

  constexpr int max_load_bits = 128;
  int valid_vec_size = max_load_bits / CHAR_BIT / sizeof(T);
  auto address = reinterpret_cast<uintptr_t>(ptr);
121 122 123
  constexpr int vec8 = alignof(phi::AlignedVector<T, 8>);
  constexpr int vec4 = alignof(phi::AlignedVector<T, 4>);
  constexpr int vec2 = alignof(phi::AlignedVector<T, 2>);
124
  chunk_size *= sizeof(T);
125 126 127 128 129 130 131 132 133 134 135
  if (address % vec8 == 0 && chunk_size % vec8 == 0) {
    return std::min(8, valid_vec_size);
  } else if (address % vec4 == 0 && chunk_size % vec4 == 0) {
    return std::min(4, valid_vec_size);
  } else if (address % vec2 == 0 && chunk_size % vec2 == 0) {
    return std::min(2, valid_vec_size);
  } else {
    return 1;
  }
}

136 137 138 139 140
#define PD_VEC_LAUNCH_KERNEL_CASE(__vec_size, ...) \
  case __vec_size: {                               \
    constexpr int kVecSize = __vec_size;           \
    __VA_ARGS__;                                   \
    break;                                         \
141 142
  }

143 144 145 146 147 148 149 150
#define PD_VEC_LAUNCH_KERNEL(__vec_size, ...)    \
  do {                                           \
    switch (__vec_size) {                        \
      PD_VEC_LAUNCH_KERNEL_CASE(8, __VA_ARGS__); \
      PD_VEC_LAUNCH_KERNEL_CASE(4, __VA_ARGS__); \
      PD_VEC_LAUNCH_KERNEL_CASE(2, __VA_ARGS__); \
      PD_VEC_LAUNCH_KERNEL_CASE(1, __VA_ARGS__); \
    }                                            \
151 152 153
  } while (0)

// TODO(zengjinle): which chunk_size is better?
154 155 156
template <typename InT,
          typename OutT,
          int MaxTensorNumPerLaunch = 160,
157
          int MaxChunkNumPerLaunch = 780>
158
static void MultiTensorL2Norm(const platform::CUDAPlace &place,
159 160 161 162 163
                              gpuStream_t stream,
                              const InT *x,
                              const int *offsets,
                              int n,
                              OutT *y,
164 165 166 167 168
                              int chunk_size = 65536) {
  if (n <= 0) return;

  constexpr int kNumTensor = MaxTensorNumPerLaunch;
  constexpr int kNumChunk = MaxChunkNumPerLaunch;
169
  constexpr int kBlockDim = 512;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

  int max_chunk_num = -1;
  int vec_size = 8;
  int total_chunk_num = 0;
  for (int i = 0; i < n; ++i) {
    vec_size = std::min(
        vec_size, GetChunkedVecSize(x + offsets[i] - offsets[0], chunk_size));
    int length = offsets[i + 1] - offsets[i];
    auto tmp_chunk_num = (length + chunk_size - 1) / chunk_size;
    max_chunk_num = std::max(max_chunk_num, tmp_chunk_num);
    total_chunk_num += tmp_chunk_num;
  }

  VLOG(1) << "MultiTensorL2Norm max_chunk_num = " << max_chunk_num
          << " , total_chunk_num = " << total_chunk_num
          << " , tensor_num = " << n;

  using MT = MasterT<InT>;
  memory::Buffer tmp_out(place);
  auto *tmp_out_ptr = tmp_out.Alloc<MT>(n * max_chunk_num);
  FillZeroWithPtr(tmp_out_ptr, n * max_chunk_num, stream);

192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define PD_LAUNCH_MULTI_TENSOR_APPLY_L2_NORM_KERNEL                   \
  do {                                                                \
    using FunctorT = L2NormFunctor<InT, kBlockDim, kVecSize>;         \
    VLOG(10) << __func__ << " " << typeid(InT).name()                 \
             << " VecSize = " << kVecSize;                            \
    MultiTensorApply<FunctorT, kNumTensor, kNumChunk>(FunctorT(),     \
                                                      stream,         \
                                                      offsets,        \
                                                      n,              \
                                                      chunk_size,     \
                                                      kBlockDim,      \
                                                      x,              \
                                                      tmp_out_ptr,    \
                                                      max_chunk_num); \
206 207
  } while (0)

208 209
  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAUNCH_MULTI_TENSOR_APPLY_L2_NORM_KERNEL);
#undef PD_LAUNCH_MULTI_TENSOR_APPLY_L2_NORM_KERNEL
210

211 212
  MultiTensorL2NormReduceAgainCUDAKernel<MT, OutT, kBlockDim>
      <<<n, kBlockDim, 0, stream>>>(tmp_out_ptr, y, max_chunk_num);
213 214
}

215 216
template <int LogLevel>
static void LogParamAndTrustRatioDivSquareNorm(
217 218
    const framework::ExecutionContext &ctx,
    const float *param_square_norm,
219 220 221 222 223 224
    const float *trust_ratio_div_square_norm) {
  if (!VLOG_IS_ON(LogLevel)) return;

  auto tensors = ctx.MultiInput<framework::Tensor>("Param");
  if (tensors.empty()) return;

225 226
  const auto *order = ctx.Input<framework::Tensor>("ParamOrder")->data<int>();

227 228 229 230 231 232 233
  size_t n = tensors.size();
  auto place = tensors[0]->place();

  auto pn_vec = ToVector(param_square_norm, n, place);
  auto tn_vec = ToVector(trust_ratio_div_square_norm, n, place);

  const auto &names = ctx.GetOp().Inputs("Param");
234 235
  for (size_t i = 0; i < n; ++i) {
    auto idx = order[i];
236 237 238 239 240 241 242 243 244 245
    VLOG(LogLevel) << "Param " << tensors[idx]->dtype() << " " << names[idx]
                   << " pn = " << pn_vec[i] << " , tn = " << tn_vec[i];
  }
}

static bool IsFinite(const platform::CUDADeviceContext &dev_ctx,
                     const float *ptr) {
  auto stream = dev_ctx.stream();
  float cpu_value;
#ifdef PADDLE_WITH_HIP
246 247
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(
      &cpu_value, ptr, sizeof(float), hipMemcpyDeviceToHost, stream));
248 249
  PADDLE_ENFORCE_GPU_SUCCESS(hipStreamSynchronize(stream));
#else
250 251
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(
      &cpu_value, ptr, sizeof(float), cudaMemcpyDeviceToHost, stream));
252 253 254 255 256 257 258 259 260 261 262
  PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#endif
  LOG(INFO) << "NAN_INF indicator value: " << cpu_value;
  return isfinite(cpu_value);
}

template <typename T>
static const T *GetInputTensorPtr(const framework::ExecutionContext &ctx,
                                  const char *in_name,
                                  int64_t *numel = nullptr) {
  const auto *in_tensor = ctx.Input<framework::Tensor>(in_name);
263 264 265
  PADDLE_ENFORCE_NOT_NULL(
      in_tensor,
      platform::errors::InvalidArgument("Input(%s) cannot be NULL.", in_name));
266 267 268 269 270 271 272 273 274 275 276 277
  if (in_tensor->IsInitialized()) {
    if (numel) *numel = in_tensor->numel();
    return in_tensor->data<T>();
  } else {
    if (numel) *numel = 0;
    return nullptr;
  }
}

template <typename T, bool AllowNotExist = false>
static T *GetSameInOutTensorPtr(const framework::ExecutionContext &ctx,
                                const platform::Place &place,
278 279
                                const char *in_name,
                                const char *out_name,
280 281 282
                                int64_t *numel = nullptr) {
  const auto *in_tensor = ctx.Input<framework::Tensor>(in_name);
  if (in_tensor == nullptr || !in_tensor->IsInitialized()) {
283 284
    PADDLE_ENFORCE_EQ(AllowNotExist,
                      true,
285 286 287 288 289 290 291
                      platform::errors::InvalidArgument(
                          "Input(%s) cannot be NULL.", in_name));
    if (numel) *numel = 0;
    return nullptr;
  }

  auto *out_tensor = ctx.Output<framework::Tensor>(out_name);
292 293 294
  PADDLE_ENFORCE_NOT_NULL(
      in_tensor,
      platform::errors::InvalidArgument("Input(%s) cannot be NULL.", in_name));
295 296 297 298 299
  PADDLE_ENFORCE_NOT_NULL(out_tensor,
                          platform::errors::InvalidArgument(
                              "Output(%s) cannot be NULL.", out_name));
  const T *in_data = in_tensor->data<T>();
  T *out_data = out_tensor->mutable_data<T>(place);
300 301
  PADDLE_ENFORCE_EQ(in_data,
                    out_data,
302 303
                    platform::errors::InvalidArgument(
                        "Input(%s) and Output(%s) must be the same Tensor.",
304 305
                        in_name,
                        out_name));
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
  if (numel) *numel = out_tensor->numel();
  return out_data;
}

template <typename T>
struct SquareFunctor {
  HOSTDEVICE MasterT<T> operator()(T x) const {
    auto y = static_cast<MasterT<T>>(x);
    return y * y;
  }
};

template <typename T>
struct IsNanInfFunctor {
  HOSTDEVICE bool operator()(T x) const { return !isfinite(x); }
};

struct OrFunctor {
  HOSTDEVICE bool operator()(bool x, bool y) const { return x || y; }
};

struct AndFunctor {
  HOSTDEVICE bool operator()(bool x, bool y) const { return x && y; }
};

S
sneaxiy 已提交
331
template <typename T1, typename T2, int VecSize>
332 333
static __global__ void ScaleCUDAKernel(const T1 *__restrict__ x,
                                       const T2 *__restrict__ scale,
334 335
                                       T1 *__restrict__ y,
                                       int num) {
336 337 338
  static_assert(sizeof(T1) <= sizeof(T2),
                "sizeof(T1) must be not greater than sizeof(T2).");
  T2 s = scale[0];
S
sneaxiy 已提交
339 340 341 342 343

  int i = (threadIdx.x + blockIdx.x * blockDim.x) * VecSize;
  int stride = blockDim.x * gridDim.x * VecSize;

  for (; i + VecSize <= num; i += stride) {
344 345
    phi::AlignedVector<T1, VecSize> x_vec;
    phi::AlignedVector<T1, VecSize> y_vec;
S
sneaxiy 已提交
346

347
    phi::Load(x + i, &x_vec);
S
sneaxiy 已提交
348 349 350 351
#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
      y_vec[j] = static_cast<T1>(static_cast<T2>(x_vec[j]) * s);
    }
352
    phi::Store(y_vec, y + i);
S
sneaxiy 已提交
353 354 355
  }

  for (; i < num; ++i) {
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    y[i] = static_cast<T1>(static_cast<T2>(x[i]) * s);
  }
}

template <typename T>
static __global__ void AddToCUDAKernel(const T *__restrict__ x,
                                       T *__restrict__ y) {
  y[0] += x[0];
}

// If clip before allreduce,
// coeff = global_scale * max_global_grad_norm / (1e-6 + sqrt(square_grad_norm)
// * rescale_grad)
// if coeff >= 1 or coeff is Nan/Inf, scale = 1.0
// else scale = coeff
template <typename T1, typename T2>
static __global__ void CalcGradNormClipBeforeAllReduceScale(
373 374 375 376 377 378
    const T1 *__restrict__ global_scale,
    T1 max_global_grad_norm,
    const T1 *__restrict__ square_grad_norm,
    T1 *__restrict__ out1,
    T2 *__restrict__ out2,
    T1 clip_rescale_grad) {
379
  T1 grad_norm = static_cast<T1>(sqrtf(*square_grad_norm)) * clip_rescale_grad;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
  T1 scale = global_scale[0] * max_global_grad_norm / (1e-6 + grad_norm);
  bool found_nan_inf = !isfinite(scale);
  if (scale >= 1 || found_nan_inf) {
    scale = static_cast<T1>(1.0);
  }

  if (out1) {
    *out1 = scale;
  }
  if (out2) {
    *out2 = static_cast<T2>(scale);
  }
}

static __global__ void SetNanInfValueCUDAKernelOneFlag(const bool *in_flag_p,
                                                       float *out_p) {
  *out_p = (*in_flag_p) ? __int_as_float(0x7fffffffU) : 0.0f;
}

static __global__ void SetNanInfValueCUDAKernelTwoFlag(const bool *in_flag_p_1,
                                                       const bool *in_flag_p_2,
                                                       float *out_p) {
  *out_p =
      ((*in_flag_p_1) || (*in_flag_p_2)) ? __int_as_float(0x7fffffffU) : 0.0f;
}

406 407
template <typename T, typename GradT, int VecSize>
static __global__ void UpdateLambMomentAndTrustRatioDivCUDAKernel(
408 409
    const T *__restrict__ param_p,
    const GradT *__restrict__ grad_p,
410
    const T *__restrict__ square_grad_norm_p,
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    const T *__restrict__ global_scale,
    const T *__restrict__ beta1pow_p,
    const T *__restrict__ beta2pow_p,
    T *__restrict__ mom1_p,
    T *__restrict__ mom2_p,
    T *__restrict__ trust_ratio_div_p,
    bool *__restrict__ found_inf,
    int64_t *__restrict__ step,
    T weight_decay,
    int weight_decay_end_numel,
    T beta1,
    T beta2,
    T epsilon,
    T max_global_grad_norm,
    int num,
    T rescale_grad) {
427
  T square_grad_norm = *square_grad_norm_p;
428 429 430 431 432 433 434
  bool need_update_found_inf =
      (found_inf && threadIdx.x == 0 && blockIdx.x == 0);
  if (!isfinite(square_grad_norm)) {
    if (need_update_found_inf) *found_inf = true;
    return;
  } else if (need_update_found_inf) {
    *found_inf = false;
435
    ++(*step);
436
  }
437 438 439 440 441 442 443 444 445 446 447 448 449

  T scale = rescale_grad / global_scale[0];
  if (max_global_grad_norm > 0) {
    T clip_scale =
        max_global_grad_norm / (sqrtf(square_grad_norm) * scale + 1e-6);
    if (clip_scale < static_cast<T>(1)) {
      scale *= clip_scale;
    }
  }

  T one_minus_beta1pow = 1 - beta1pow_p[0];
  T one_minus_beta2pow = 1 - beta2pow_p[0];

450 451 452 453
  int i = (threadIdx.x + blockIdx.x * blockDim.x) * VecSize;
  int stride = blockDim.x * gridDim.x * VecSize;

  for (; i + VecSize <= num; i += stride) {
454 455 456 457 458
    phi::AlignedVector<T, VecSize> param_vec;
    phi::AlignedVector<GradT, VecSize> grad_vec;
    phi::AlignedVector<T, VecSize> mom1_vec;
    phi::AlignedVector<T, VecSize> mom2_vec;
    phi::AlignedVector<T, VecSize> trust_ratio_div_vec;
459 460 461

    T cur_weight_decay = (i < weight_decay_end_numel) * weight_decay;
    if (cur_weight_decay != static_cast<T>(0.0)) {
462
      phi::Load(param_p + i, &param_vec);
463 464 465 466 467 468
    } else {
#pragma unroll
      for (int j = 0; j < VecSize; ++j) {
        param_vec[j] = static_cast<T>(0);
      }
    }
469 470 471
    phi::Load(grad_p + i, &grad_vec);
    phi::Load(mom1_p + i, &mom1_vec);
    phi::Load(mom2_p + i, &mom2_vec);
472

473 474
#define PD_LAMB_MOM_TRUST_RATIO_DIV_UPDATE(                                    \
    __param, __grad, __mom1, __mom2, __trust_ratio_div, __idx)                 \
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
  T p = __param[__idx];                                                        \
  T g = static_cast<T>(__grad[__idx]) * scale;                                 \
  T mom1 = __mom1[__idx];                                                      \
  T mom2 = __mom2[__idx];                                                      \
  mom1 = beta1 * mom1 + (1 - beta1) * g;                                       \
  mom2 = beta2 * mom2 + (1 - beta2) * g * g;                                   \
  T mom1_unbiased = mom1 / one_minus_beta1pow;                                 \
  T mom2_unbiased = mom2 / one_minus_beta2pow;                                 \
  __trust_ratio_div[__idx] =                                                   \
      mom1_unbiased / (sqrtf(mom2_unbiased) + epsilon) + cur_weight_decay * p; \
  __mom1[__idx] = mom1;                                                        \
  __mom2[__idx] = mom2;

#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
490 491
      PD_LAMB_MOM_TRUST_RATIO_DIV_UPDATE(
          param_vec, grad_vec, mom1_vec, mom2_vec, trust_ratio_div_vec, j);
492 493
    }

494 495 496
    phi::Store(mom1_vec, mom1_p + i);
    phi::Store(mom2_vec, mom2_p + i);
    phi::Store(trust_ratio_div_vec, trust_ratio_div_p + i);
497 498 499 500
  }

  for (; i < num; ++i) {
    T cur_weight_decay = (i < weight_decay_end_numel) * weight_decay;
501 502
    PD_LAMB_MOM_TRUST_RATIO_DIV_UPDATE(
        param_p, grad_p, mom1_p, mom2_p, trust_ratio_div_p, i);
503 504 505
  }
}

506 507
template <typename T, typename GradT>
static void MultiTensorUpdateLambMomentAndTrustRatioDiv(
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    const platform::CUDADeviceContext &dev_ctx,
    const int *offsets,
    int n,
    const T *param_p,
    const GradT *grad_p,
    const T *square_grad_norm_p,
    const T *global_scale,
    const T *beta1pow_p,
    const T *beta2pow_p,
    T *mom1_p,
    T *mom2_p,
    T *trust_ratio_div_p,
    bool *found_inf_p,
    int64_t *step,
    T weight_decay,
    int weight_decay_end_idx,
    T beta1,
    T beta2,
    T epsilon,
    T max_global_grad_norm,
    T rescale_grad) {
529 530
  if (n <= 0) return;
  int numel = offsets[n] - offsets[0];
531 532
  PADDLE_ENFORCE_GE(weight_decay_end_idx,
                    0,
533 534
                    platform::errors::InvalidArgument(
                        "The weight decay end index should be >= 0."));
535 536
  PADDLE_ENFORCE_LE(weight_decay_end_idx,
                    n,
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
                    platform::errors::InvalidArgument(
                        "The weight decay end index should be < %d.", n));
  auto weight_decay_end_numel = offsets[weight_decay_end_idx] - offsets[0];

  int vec_size = GetChunkedVecSize(param_p, 0);
  vec_size = std::min(vec_size, GetChunkedVecSize(grad_p, 0));
  vec_size = std::min(vec_size, GetChunkedVecSize(mom1_p, 0));
  vec_size = std::min(vec_size, GetChunkedVecSize(mom2_p, 0));
  vec_size = std::min(vec_size, GetChunkedVecSize(trust_ratio_div_p, 0));
  for (int i = 0; i < n; ++i) {
    auto length = offsets[i + 1] - offsets[i];
    while (length % vec_size != 0) {
      vec_size /= 2;
    }
  }

  VLOG(1) << __func__ << " VecSize = " << vec_size;

  auto stream = dev_ctx.stream();
  auto config = platform::GetGpuLaunchConfig1D(dev_ctx, numel, vec_size);
557 558
  if (found_inf_p == nullptr) {
    PADDLE_ENFORCE_EQ(
559 560
        step,
        nullptr,
561 562 563
        platform::errors::InvalidArgument(
            "Output(Step) cannot be updated twice in one mini-batch."));
  } else {
564 565 566
    PADDLE_ENFORCE_NOT_NULL(
        step,
        platform::errors::InvalidArgument("Output(Step) cannot be nullptr."));
567
  }
568

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
#define PD_LAUNCH_LAMB_MOM_TRUST_RATIO_DIV_KERNEL                        \
  do {                                                                   \
    UpdateLambMomentAndTrustRatioDivCUDAKernel<T, GradT, kVecSize>       \
        <<<config.block_per_grid, config.thread_per_block, 0, stream>>>( \
            param_p,                                                     \
            grad_p,                                                      \
            square_grad_norm_p,                                          \
            global_scale,                                                \
            beta1pow_p,                                                  \
            beta2pow_p,                                                  \
            mom1_p,                                                      \
            mom2_p,                                                      \
            trust_ratio_div_p,                                           \
            found_inf_p,                                                 \
            step,                                                        \
            weight_decay,                                                \
            weight_decay_end_numel,                                      \
            beta1,                                                       \
            beta2,                                                       \
            epsilon,                                                     \
            max_global_grad_norm,                                        \
            numel,                                                       \
            rescale_grad);                                               \
592 593 594 595 596 597
  } while (0)

  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAUNCH_LAMB_MOM_TRUST_RATIO_DIV_KERNEL);
#undef PD_LAUNCH_LAMB_MOM_TRUST_RATIO_DIV_KERNEL
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
template <typename T, bool NeedUpdate /*=true*/>
struct LambBetaPowUpdateOnceHelper {
  LambBetaPowUpdateOnceHelper(T *beta1pow, T *beta2pow, T beta1, T beta2) {
    PADDLE_ENFORCE_NOT_NULL(beta1pow,
                            platform::errors::InvalidArgument(
                                "The beta1pow should not be nullptr."));
    PADDLE_ENFORCE_NOT_NULL(beta2pow,
                            platform::errors::InvalidArgument(
                                "The beta2pow should not be nullptr."));
    beta1pow_ = beta1pow;
    beta2pow_ = beta2pow;
    beta1_ = beta1;
    beta2_ = beta2;
  }

  HOSTDEVICE void UpdateBetaPows() const {
    beta1pow_[0] *= beta1_;
    beta2pow_[0] *= beta2_;
  }

 private:
  T *__restrict__ beta1pow_;
  T *__restrict__ beta2pow_;
  T beta1_;
  T beta2_;
};

template <typename T>
struct LambBetaPowUpdateOnceHelper<T, false> {
  LambBetaPowUpdateOnceHelper(T *beta1pow, T *beta2pow, T beta1, T beta2) {
    PADDLE_ENFORCE_EQ(
629 630
        beta1pow,
        nullptr,
631 632
        platform::errors::InvalidArgument("The beta1pow should be nullptr."));
    PADDLE_ENFORCE_EQ(
633 634
        beta2pow,
        nullptr,
635 636 637 638 639 640 641 642 643 644
        platform::errors::InvalidArgument("The beta2pow should be nullptr."));
  }

  HOSTDEVICE void UpdateBetaPows() const {}
};

template <typename T, bool HasMasterParam /*=true*/>
struct LambParamHelper {
  LambParamHelper(T *param, MasterT<T> *master_param) {
    constexpr bool kIsSameType = std::is_same<T, MasterT<T>>::value;
645 646
    PADDLE_ENFORCE_EQ(kIsSameType,
                      false,
647 648 649 650 651 652 653 654 655
                      platform::errors::InvalidArgument(
                          "T must not be the same with MasterT<T>."));
    PADDLE_ENFORCE_NOT_NULL(master_param,
                            platform::errors::InvalidArgument(
                                "Master parameter must be provided."));
    param_ = param;
    master_param_ = master_param;
  }

656
  HOSTDEVICE T *__restrict__ ParamPtr() { return param_; }
657

658
  HOSTDEVICE MasterT<T> *__restrict__ MasterParamPtr() { return master_param_; }
659 660 661 662 663 664 665 666 667 668

 private:
  T *__restrict__ param_;
  MasterT<T> *__restrict__ master_param_;
};

template <typename T>
struct LambParamHelper<T, false> {
  LambParamHelper(T *param, MasterT<T> *master_param) {
    constexpr bool kIsSameType = std::is_same<T, MasterT<T>>::value;
669 670
    PADDLE_ENFORCE_EQ(kIsSameType,
                      true,
671 672 673 674 675 676 677 678 679 680 681 682
                      platform::errors::InvalidArgument(
                          "T must be the same with MasterT<T>."));
    if (master_param != nullptr) {
      PADDLE_ENFORCE_EQ(static_cast<void *>(param),
                        static_cast<void *>(master_param),
                        platform::errors::InvalidArgument(
                            "Master parameter must be nullptr or the same as "
                            "non-master parameter."));
    }
    param_ = param;
  }

683
  HOSTDEVICE T *__restrict__ ParamPtr() { return param_; }
684

685
  HOSTDEVICE constexpr MasterT<T> *MasterParamPtr() { return nullptr; }
686 687 688 689 690

 private:
  T *__restrict__ param_;
};

691 692 693
template <typename ParamT,
          bool HasMasterParam,
          bool NeedUpdateBetaPow,
694 695 696
          int VecSize>
struct LambUpdateParamAndBetaPowsFunctor {
  DEVICE void operator()(
697 698 699 700
      int tensor_id,
      int chunk_id,
      int offset,
      int size,
701
      LambParamHelper<ParamT, HasMasterParam> param_helper,
702 703
      const MasterT<ParamT> *trust_ratio_div,
      const MasterT<ParamT> *lr,
704
      const MasterT<ParamT> *param_square_norm,
705 706
      const MasterT<ParamT> *trust_ratio_div_square_norm,
      const bool *found_inf,
707 708 709 710 711
      LambBetaPowUpdateOnceHelper<MasterT<ParamT>, NeedUpdateBetaPow>
          betapow_helper) const {
    if (*found_inf) return;

    using MT = MasterT<ParamT>;
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    MT p_square_norm = param_square_norm[tensor_id];
    MT t_square_norm = trust_ratio_div_square_norm[tensor_id];
    MT lr_value = *lr;
    MT ratio = (p_square_norm != static_cast<MT>(0) &&
                        t_square_norm != static_cast<MT>(0)
                    ? lr_value * sqrtf(p_square_norm / t_square_norm)
                    : lr_value);

    int i;
    int stride = blockDim.x * VecSize;

    ParamT *param = param_helper.ParamPtr() + offset;
    MT *master_param = HasMasterParam ? param_helper.MasterParamPtr() + offset
                                      : param_helper.MasterParamPtr();
    trust_ratio_div += offset;

    for (i = threadIdx.x * VecSize; i + VecSize <= size; i += stride) {
730 731
      phi::AlignedVector<MT, VecSize> trust_ratio_div_vec;
      phi::Load(trust_ratio_div + i, &trust_ratio_div_vec);
732
      if (HasMasterParam) {
733 734 735
        phi::AlignedVector<MT, VecSize> master_param_vec;
        phi::Load(master_param + i, &master_param_vec);
        phi::AlignedVector<ParamT, VecSize> param_vec;
736 737 738 739 740 741
#pragma unroll
        for (int j = 0; j < VecSize; ++j) {
          MT p = master_param_vec[j] - ratio * trust_ratio_div_vec[j];
          master_param_vec[j] = p;
          param_vec[j] = static_cast<ParamT>(p);
        }
742 743
        phi::Store(master_param_vec, master_param + i);
        phi::Store(param_vec, param + i);
744
      } else {
745 746
        phi::AlignedVector<ParamT, VecSize> param_vec;
        phi::Load(param + i, &param_vec);
747 748 749 750 751
#pragma unroll
        for (int j = 0; j < VecSize; ++j) {
          MT p = static_cast<MT>(param_vec[j]) - ratio * trust_ratio_div_vec[j];
          param_vec[j] = static_cast<ParamT>(p);
        }
752
        phi::Store(param_vec, param + i);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
      }
    }

    for (; i < size; ++i) {
      if (HasMasterParam) {
        MT p = master_param[i] - ratio * trust_ratio_div[i];
        master_param[i] = p;
        param[i] = static_cast<ParamT>(p);
      } else {
        MT p = static_cast<MT>(param[i]) - ratio * trust_ratio_div[i];
        param[i] = static_cast<ParamT>(p);
      }
    }

    if (NeedUpdateBetaPow && threadIdx.x == 0 && blockIdx.x == 0) {
      betapow_helper.UpdateBetaPows();
769 770
    }
  }
771
};
772

773
// TODO(zengjinle): which block_dim and chunk_size would be better?
774 775
template <typename ParamT,
          int MaxTensorNumPerLaunch = 160,
776 777
          int MaxChunkNumPerLaunch = 780>
static void MultiTensorUpdateLambParamAndBetaPows(
778 779 780 781 782
    const platform::CUDADeviceContext &dev_ctx,
    const int *offsets,
    int n,
    const MasterT<ParamT> *trust_ratio_div,
    const MasterT<ParamT> *lr,
783
    const MasterT<ParamT> *param_square_norm,
784 785 786 787 788 789 790 791
    const MasterT<ParamT> *trust_ratio_div_square_norm,
    const bool *found_inf,
    ParamT *param,
    MasterT<ParamT> *master_param,
    MasterT<ParamT> *beta1pow,
    MasterT<ParamT> *beta2pow,
    MasterT<ParamT> beta1,
    MasterT<ParamT> beta2,
792 793 794 795 796 797
    int chunk_size = 65536) {
  constexpr bool kHasMasterParam =
      !(std::is_same<ParamT, MasterT<ParamT>>::value);

  bool has_beta_pow = (beta1pow != nullptr);
  if (has_beta_pow) {
798 799 800
    PADDLE_ENFORCE_NOT_NULL(
        beta2pow,
        platform::errors::InvalidArgument("Beta2Pow should not be nullptr."));
801
  } else {
802
    PADDLE_ENFORCE_EQ(
803 804
        beta2pow,
        nullptr,
805
        platform::errors::InvalidArgument("Beta2Pow should be nullptr."));
806 807
  }

808
  const int block_dim = 512;
809

810 811 812 813 814 815 816 817 818 819 820 821
  int vec_size = 8;
  for (int i = 0; i < n; ++i) {
    int offset = offsets[i] - offsets[0];
    vec_size =
        std::min(vec_size, GetChunkedVecSize(param + offset, chunk_size));
    if (kHasMasterParam) {
      vec_size = std::min(vec_size,
                          GetChunkedVecSize(master_param + offset, chunk_size));
    }
    vec_size = std::min(
        vec_size, GetChunkedVecSize(trust_ratio_div + offset, chunk_size));
  }
822

823
  VLOG(1) << __func__ << " VecSize = " << vec_size;
824

825 826
  constexpr auto kNumTensor = MaxTensorNumPerLaunch;
  constexpr auto kNumChunk = MaxChunkNumPerLaunch;
827

828
  auto stream = dev_ctx.stream();
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
#define PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW(__has_beta_pow)      \
  do {                                                                   \
    using FunctorT = LambUpdateParamAndBetaPowsFunctor<ParamT,           \
                                                       kHasMasterParam,  \
                                                       __has_beta_pow,   \
                                                       kVecSize>;        \
    LambParamHelper<ParamT, kHasMasterParam> param_helper(param,         \
                                                          master_param); \
    LambBetaPowUpdateOnceHelper<MasterT<ParamT>, __has_beta_pow>         \
        betapow_helper(beta1pow, beta2pow, beta1, beta2);                \
    launcher.Launch(FunctorT(),                                          \
                    param_helper,                                        \
                    trust_ratio_div,                                     \
                    lr,                                                  \
                    param_square_norm,                                   \
                    trust_ratio_div_square_norm,                         \
                    found_inf,                                           \
                    betapow_helper);                                     \
847
  } while (0)
848

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
#define PD_LAUNCH_VEC_MULTI_TENSOR_UPDATE_PARAM_BETAPOW_CASE            \
  do {                                                                  \
    auto callback =                                                     \
        [&](const MultiTensorLauncher<kNumTensor, kNumChunk> &launcher, \
            int launch_n) {                                             \
          if (has_beta_pow && launch_n == 0) {                          \
            PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW(true);          \
            beta1pow = nullptr;                                         \
            beta2pow = nullptr;                                         \
          } else {                                                      \
            PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW(false);         \
          }                                                             \
        };                                                              \
    MultiTensorApplyWithCallback<kNumTensor, kNumChunk>(                \
        stream, offsets, n, chunk_size, block_dim, callback);           \
864 865
  } while (0)

866 867
  PD_VEC_LAUNCH_KERNEL(vec_size,
                       PD_LAUNCH_VEC_MULTI_TENSOR_UPDATE_PARAM_BETAPOW_CASE);
868

869 870
#undef PD_LAUNCH_MULTI_TENSOR_UPDATE_PARAM_BETAPOW
#undef PD_LAUNCH_VEC_MULTI_TENSOR_UPDATE_PARAM_BETAPOW_CASE
871 872 873 874
}

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
static bool CreatePreMulScaleOpIfSupported(ncclDataType_t dtype,
875 876
                                           ncclComm_t comm,
                                           const void *scale,
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
                                           ncclRedOp_t *op) {
#if NCCL_VERSION_CODE >= 21100
  int ver;
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  if (ver >= 21100) {
    VLOG(10) << "ncclRedOpCreatePreMulSum is supported.";
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRedOpCreatePreMulSum(
        op, const_cast<void *>(scale), dtype, ncclScalarDevice, comm));
    return true;
  }
#endif
  VLOG(10) << "ncclRedOpCreatePreMulSum is not supported.";
  return false;
}

S
sneaxiy 已提交
892 893
template <typename T1, typename T2>
static void LaunchScaleKernel(const platform::CUDADeviceContext &dev_ctx,
894 895 896 897
                              const T1 *x,
                              const T2 *scale,
                              T1 *y,
                              int n,
S
sneaxiy 已提交
898 899 900 901
                              gpuStream_t stream) {
  int vec_size = std::min(GetChunkedVecSize(x, 0), GetChunkedVecSize(y, 0));
  auto config = platform::GetGpuLaunchConfig1D(dev_ctx, n, vec_size);

902 903 904 905 906
#define PD_LAMB_VEC_SCALE_KERNEL_CASE                                    \
  do {                                                                   \
    ScaleCUDAKernel<T1, T2, kVecSize>                                    \
        <<<config.block_per_grid, config.thread_per_block, 0, stream>>>( \
            x, scale, y, n);                                             \
S
sneaxiy 已提交
907 908 909 910 911 912
  } while (0)

  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAMB_VEC_SCALE_KERNEL_CASE);
#undef PD_LAMB_VEC_SCALE_KERNEL_CASE
}

913
template <typename T, bool UseReduceScatter>
914 915 916 917 918 919
static void NCCLSumWithScaleBase(const T *sendbuff,
                                 T *recvbuff,
                                 size_t recvcount,
                                 size_t nranks,
                                 ncclComm_t comm,
                                 gpuStream_t stream,
920 921
                                 const platform::CUDADeviceContext &dev_ctx,
                                 const T *scale = nullptr) {
922 923 924 925 926
  static_assert(std::is_same<T, float>::value ||
                    std::is_same<T, platform::float16>::value,
                "T must be either float32 or float16.");
  if (recvcount == 0) return;

927
  auto numel = UseReduceScatter ? (recvcount * nranks) : recvcount;
928 929
  if (comm == nullptr) {
    if (scale != nullptr) {
930 931
      PADDLE_ENFORCE_EQ(nranks,
                        1,
932 933
                        platform::errors::InvalidArgument(
                            "nranks must be 1 when scale != nullptr."));
934
      LaunchScaleKernel(dev_ctx, sendbuff, scale, recvbuff, numel, stream);
935 936 937 938 939 940 941 942 943 944 945 946
    }
    return;
  }

  ncclRedOp_t op = ncclSum;
  ncclDataType_t dtype =
      std::is_same<T, float>::value ? ncclFloat32 : ncclFloat16;
  bool should_destroy_op =
      scale && CreatePreMulScaleOpIfSupported(dtype, comm, scale, &op);
  memory::Buffer buffer(dev_ctx.GetPlace());
  if (scale && !should_destroy_op) {
    T *new_sendbuff = buffer.Alloc<T>(numel);
S
sneaxiy 已提交
947
    LaunchScaleKernel(dev_ctx, sendbuff, scale, new_sendbuff, numel, stream);
948 949 950
    sendbuff = new_sendbuff;
  }

951 952 953 954 955 956 957
  if (UseReduceScatter) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
        sendbuff, recvbuff, recvcount, dtype, op, comm, stream));
  } else {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
        sendbuff, recvbuff, recvcount, dtype, op, comm, stream));
  }
958 959 960 961 962 963 964 965 966

#if NCCL_VERSION_CODE >= 21100
  if (should_destroy_op) {
    VLOG(10) << "ncclRedOpDestroy starts";
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRedOpDestroy(op, comm));
    VLOG(10) << "ncclRedOpDestroy ends";
  }
#endif
}
967 968 969

template <typename T>
static void NCCLReduceScatterWithScale(
970 971 972 973 974 975 976 977 978 979
    const T *sendbuff,
    T *recvbuff,
    size_t recvcount,
    size_t nranks,
    ncclComm_t comm,
    gpuStream_t stream,
    const platform::CUDADeviceContext &dev_ctx,
    const T *scale = nullptr) {
  NCCLSumWithScaleBase<T, true>(
      sendbuff, recvbuff, recvcount, nranks, comm, stream, dev_ctx, scale);
980 981 982
}

template <typename T>
983 984 985 986 987 988
static void NCCLAllReduceWithScale(const T *sendbuff,
                                   T *recvbuff,
                                   size_t recvcount,
                                   size_t nranks,
                                   ncclComm_t comm,
                                   gpuStream_t stream,
989 990
                                   const platform::CUDADeviceContext &dev_ctx,
                                   const T *scale = nullptr) {
991 992
  NCCLSumWithScaleBase<T, false>(
      sendbuff, recvbuff, recvcount, nranks, comm, stream, dev_ctx, scale);
993 994
}

995 996
#endif

997 998 999
template <typename InputIteratorT,
          typename OutputIteratorT,
          typename ReduceOpT,
1000
          typename T>
1001 1002 1003 1004 1005 1006 1007
static void CubDeviceReduce(InputIteratorT d_in,
                            OutputIteratorT d_out,
                            int num_items,
                            ReduceOpT reduction_op,
                            T init,
                            gpuStream_t stream,
                            memory::Buffer *buffer) {
1008 1009
  void *d_temp_storage = nullptr;
  size_t temp_storage_bytes = 0;
1010 1011 1012 1013 1014 1015 1016 1017
  PADDLE_ENFORCE_GPU_SUCCESS(cub::DeviceReduce::Reduce(d_temp_storage,
                                                       temp_storage_bytes,
                                                       d_in,
                                                       d_out,
                                                       num_items,
                                                       reduction_op,
                                                       init,
                                                       stream));
1018 1019 1020
  d_temp_storage = buffer->Alloc<void>(temp_storage_bytes);
  VLOG(10) << "cub::DeviceReduce::Reduce needs " << temp_storage_bytes
           << " byte(s), ptr = " << d_temp_storage;
1021 1022 1023 1024 1025 1026 1027 1028
  PADDLE_ENFORCE_GPU_SUCCESS(cub::DeviceReduce::Reduce(d_temp_storage,
                                                       temp_storage_bytes,
                                                       d_in,
                                                       d_out,
                                                       num_items,
                                                       reduction_op,
                                                       init,
                                                       stream));
1029 1030 1031
}

template <typename T>
1032 1033 1034
static void GetSquareGradNormImpl(const T *grad,
                                  int n,
                                  float *square_norm,
1035 1036 1037 1038 1039
                                  gpuStream_t stream,
                                  memory::Buffer *cub_tmp_buffer) {
  using Iterator =
      cub::TransformInputIterator<float, SquareFunctor<T>, const T *>;
  Iterator iter(grad, SquareFunctor<T>());
1040 1041 1042 1043 1044 1045 1046
  CubDeviceReduce(iter,
                  square_norm,
                  n,
                  cub::Sum(),
                  static_cast<float>(0),
                  stream,
                  cub_tmp_buffer);
1047 1048 1049
}

// square_norm is of length 2 at least
1050 1051
static void GetSquareGradNorm(const float *fp32_grad,
                              int fp32_numel,
1052
                              const platform::float16 *fp16_grad,
1053 1054
                              int fp16_numel,
                              float *square_norm,
1055 1056 1057 1058 1059
                              gpuStream_t stream,
                              memory::Buffer *cub_tmp_buffer) {
  VLOG(10) << "GetSquareGradNorm starts, fp32_numel = " << fp32_numel
           << " , fp16_numel = " << fp16_numel;
  if (fp32_numel > 0) {
1060 1061
    GetSquareGradNormImpl(
        fp32_grad, fp32_numel, square_norm, stream, cub_tmp_buffer);
1062 1063 1064 1065 1066 1067
    VLOG(10) << "FP32 square L2-Norm: "
             << FlattenToString(square_norm, 1, cub_tmp_buffer->GetPlace());
  }

  if (fp16_numel > 0) {
    float *fp16_square_norm = fp32_numel > 0 ? square_norm + 1 : square_norm;
1068 1069
    GetSquareGradNormImpl(
        fp16_grad, fp16_numel, fp16_square_norm, stream, cub_tmp_buffer);
1070
    VLOG(10) << "FP16 square L2-Norm: "
1071 1072
             << FlattenToString(
                    fp16_square_norm, 1, cub_tmp_buffer->GetPlace());
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    if (fp32_numel > 0) {
      AddToCUDAKernel<<<1, 1, 0, stream>>>(fp16_square_norm, square_norm);
      VLOG(10) << "FP32+FP16 square L2-Norm: "
               << FlattenToString(square_norm, 1, cub_tmp_buffer->GetPlace());
    }
  }
  VLOG(10) << "GetSquareGradNorm ends, fp32_numel = " << fp32_numel
           << " , fp16_numel = " << fp16_numel;
}

template <typename T>
std::string NumToString(T x) {
  std::stringstream ss;
  ss << x;
  return ss.str();
}

template <typename T>
1091 1092
static std::string GetMinMaxStr(const T *x,
                                size_t n,
1093 1094
                                const platform::Place &place) {
  PADDLE_ENFORCE_EQ(
1095 1096
      platform::is_gpu_place(place),
      true,
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
      platform::errors::InvalidArgument("Only support CUDAPlace currently."));

  auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  memory::Buffer ret_buffer(place);
  T *ret = ret_buffer.Alloc<T>(2);

  if (n > 0) {
    memory::Buffer cub_buffer(place);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    CubDeviceReduce(x,
                    ret,
                    n,
                    cub::Min(),
                    std::numeric_limits<T>::max(),
                    stream,
                    &cub_buffer);
    CubDeviceReduce(x,
                    ret + 1,
                    n,
                    cub::Max(),
                    std::numeric_limits<T>::lowest(),
                    stream,
                    &cub_buffer);
1122 1123
    T ret_cpu[2];
#ifdef PADDLE_WITH_HIP
1124 1125
    PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(
        &ret_cpu[0], ret, 2 * sizeof(T), hipMemcpyDeviceToHost, stream));
1126 1127
    PADDLE_ENFORCE_GPU_SUCCESS(hipStreamSynchronize(stream));
#else
1128 1129
    PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(
        &ret_cpu[0], ret, 2 * sizeof(T), cudaMemcpyDeviceToHost, stream));
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#endif
    return std::string("{\"min\": ") + NumToString(ret_cpu[0]) +
           " , \"max\": " + NumToString(ret_cpu[1]) + "}";
  } else {
    return "{\"min\": null, \"max\": null}";
  }
}

struct VisitDTypeFunctor {
  VisitDTypeFunctor(const framework::Tensor *x, std::string *s)
      : x_(x), s_(s) {}

  template <typename T>
  void apply() const {
    *s_ = GetMinMaxStr<T>(x_->template data<T>(), x_->numel(), x_->place());
  }

 private:
  const framework::Tensor *x_;
  std::string *s_;
};

static std::string GetMinMaxStr(const framework::Tensor *x) {
  if (x == nullptr) return "null";
  if (!x->IsInitialized()) return "not_inited";
  if (!platform::is_gpu_place(x->place())) return "CPUTensor";
  std::string str;
  VisitDTypeFunctor functor(x, &str);
1159
  phi::VisitDataType(x->dtype(), functor);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
  return str;
}

static void PrintAllMinMaxRange(const framework::ExecutionContext &ctx,
                                bool only_inputs) {
  if (!VLOG_IS_ON(1)) return;
  for (const auto &pair : ctx.GetOp().Inputs()) {
    const auto &key = pair.first;
    const auto tensors = ctx.MultiInput<framework::Tensor>(key);
    size_t n = tensors.size();
    for (size_t i = 0; i < n; ++i) {
      VLOG(1) << "Input(" << key + ")[" << i << "] = " << pair.second[i]
              << " , " << GetMinMaxStr(tensors[i]);
    }
  }

  if (only_inputs) return;
  for (const auto &pair : ctx.GetOp().Outputs()) {
    const auto &key = pair.first;
    const auto tensors = ctx.MultiOutput<framework::Tensor>(key);
    size_t n = tensors.size();
    for (size_t i = 0; i < n; ++i) {
      VLOG(1) << "Output(" << key + ")[" << i << "] = " << pair.second[i]
              << " , " << GetMinMaxStr(tensors[i]);
    }
  }
}

1188 1189
static void CheckHasNanInfGrad(const float *fp32_grad,
                               int fp32_numel,
1190
                               const platform::float16 *fp16_grad,
1191 1192
                               int fp16_numel,
                               float *nan_inf_flag,
1193 1194 1195 1196 1197 1198 1199
                               gpuStream_t stream,
                               memory::Buffer *cub_tmp_buffer) {
  bool *fp32_has_nan_inf = nullptr;
  bool *fp16_has_nan_inf = nullptr;
  if (fp32_numel > 0) {
    fp32_has_nan_inf = reinterpret_cast<bool *>(nan_inf_flag + 1);
    cub::TransformInputIterator<bool, IsNanInfFunctor<float>, const float *>
1200
        iter(fp32_grad, IsNanInfFunctor<float>());
1201 1202 1203 1204 1205 1206 1207
    CubDeviceReduce(iter,
                    fp32_has_nan_inf,
                    fp32_numel,
                    OrFunctor(),
                    false,
                    stream,
                    cub_tmp_buffer);
1208 1209 1210 1211
  }

  if (fp16_numel > 0) {
    fp16_has_nan_inf = reinterpret_cast<bool *>(nan_inf_flag + 1) + 1;
1212 1213
    cub::TransformInputIterator<bool,
                                IsNanInfFunctor<platform::float16>,
1214 1215
                                const platform::float16 *>
        iter(fp16_grad, IsNanInfFunctor<platform::float16>());
1216 1217 1218 1219 1220 1221 1222
    CubDeviceReduce(iter,
                    fp16_has_nan_inf,
                    fp16_numel,
                    OrFunctor(),
                    false,
                    stream,
                    cub_tmp_buffer);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
  }

  if (fp32_has_nan_inf && fp16_has_nan_inf) {
    SetNanInfValueCUDAKernelTwoFlag<<<1, 1, 0, stream>>>(
        fp32_has_nan_inf, fp16_has_nan_inf, nan_inf_flag);
  } else if (fp32_has_nan_inf) {
    SetNanInfValueCUDAKernelOneFlag<<<1, 1, 0, stream>>>(fp32_has_nan_inf,
                                                         nan_inf_flag);
  } else {
    SetNanInfValueCUDAKernelOneFlag<<<1, 1, 0, stream>>>(fp16_has_nan_inf,
                                                         nan_inf_flag);
  }
}

1237 1238
template <typename T1, typename T2, typename T3, int VecSize>
static __global__ void ElementwiseAddWithCastCUDAKernel(const T1 *x,
1239 1240
                                                        const T2 *y,
                                                        T3 *z,
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
                                                        int n) {
  static_assert(sizeof(T1) <= sizeof(T2),
                "sizeof(T1) must be smaller than sizeof(T2).");
  using MT = MasterT<T2>;

  int i = (threadIdx.x + blockIdx.x * blockDim.x) * VecSize;
  int stride = (blockDim.x * gridDim.x) * VecSize;
  for (; i + VecSize <= n; i += stride) {
    phi::AlignedVector<T1, VecSize> x_vec;
    phi::AlignedVector<T2, VecSize> y_vec;
    phi::AlignedVector<T3, VecSize> z_vec;
    phi::Load(x + i, &x_vec);
    phi::Load(y + i, &y_vec);
#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
      auto x_tmp = static_cast<MT>(x_vec[j]);
      auto y_tmp = static_cast<MT>(y_vec[j]);
      z_vec[j] = static_cast<T3>(x_tmp + y_tmp);
    }
    phi::Store(z_vec, z + i);
  }

  for (; i < n; ++i) {
    auto x_tmp = static_cast<MT>(x[i]);
    auto y_tmp = static_cast<MT>(y[i]);
    z[i] = static_cast<T3>(x_tmp + y_tmp);
  }
}

template <typename T1, typename T2, typename T3>
static void LaunchElementwiseAddWithCastKernel(
1272 1273 1274 1275 1276 1277
    const platform::CUDADeviceContext &dev_ctx,
    const T1 *x,
    const T2 *y,
    T3 *z,
    int n,
    gpuStream_t stream) {
1278 1279 1280 1281 1282
  int vec_size =
      std::min(std::min(GetChunkedVecSize(x, 0), GetChunkedVecSize(y, 0)),
               GetChunkedVecSize(z, 0));
  auto config = platform::GetGpuLaunchConfig1D(dev_ctx, n, vec_size);

1283 1284 1285 1286 1287
#define PD_LAUNCH_ELEMENTWISE_ADD_WITH_CAST_KERNEL                       \
  do {                                                                   \
    ElementwiseAddWithCastCUDAKernel<T1, T2, T3, kVecSize>               \
        <<<config.block_per_grid, config.thread_per_block, 0, stream>>>( \
            x, y, z, n);                                                 \
1288 1289 1290 1291 1292 1293
  } while (0)

  PD_VEC_LAUNCH_KERNEL(vec_size, PD_LAUNCH_ELEMENTWISE_ADD_WITH_CAST_KERNEL);
#undef PD_LAUNCH_ELEMENTWISE_ADD_WITH_CAST_KERNEL
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
template <typename T>
class DistributedFusedLambOpKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto stream = dev_ctx.stream();
    auto place = dev_ctx.GetPlace();

1304 1305 1306
    auto *found_inf_t = ctx.Output<framework::Tensor>("FoundInf");
    found_inf_t->Resize({1});

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
    // Step 1: Get fp16 param and grad tensors
    int64_t fp16_numel;
    auto *fp16_param = GetSameInOutTensorPtr<platform::float16, true>(
        ctx, place, "FP16FusedParam", "FP16FusedParamOut", &fp16_numel);
    bool has_fp16_param = (fp16_numel > 0);
    const platform::float16 *fp16_grad = nullptr;
    if (has_fp16_param) {
      fp16_grad = GetInputTensorPtr<platform::float16>(ctx, "FP16FusedGrad");
    } else {
      fp16_param = nullptr;
    }

    // Step 2: Get fp32 param and grad tensors
    int64_t fp32_numel = 0;
    auto *fp32_param = GetSameInOutTensorPtr<float, true>(
        ctx, place, "FP32FusedParam", "FP32FusedParamOut", &fp32_numel);
1323 1324
    PADDLE_ENFORCE_GE(fp32_numel,
                      fp16_numel,
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
                      platform::errors::InvalidArgument(
                          "The element number in FP32FusedParam should be not "
                          "less than FP16FusedParam."));

    fp32_numel -= fp16_numel;  // the FP32FusedParam contains fp32 param and
                               // fp16 master weight
    bool has_fp32_param = (fp32_numel > 0);
    const float *fp32_grad = nullptr;
    if (has_fp32_param) {
      fp32_grad = GetInputTensorPtr<float>(ctx, "FP32FusedGrad");
    } else {
      PADDLE_ENFORCE_EQ(
1337 1338
          has_fp16_param,
          true,
1339 1340 1341 1342 1343 1344 1345 1346 1347
          platform::errors::InvalidArgument(
              "Either FP32FusedGrad or FP16FusedGrad cannot be NULL."));
    }

    auto numel = fp32_numel + fp16_numel;
    VLOG(1) << "numel = " << numel << " , fp32_numel = " << fp32_numel
            << " , fp16_numel = " << fp16_numel;

    // The NVIDIA cub library does not support number > INT32_MAX
1348 1349
    PADDLE_ENFORCE_LE(numel,
                      std::numeric_limits<int>::max(),
1350 1351 1352 1353
                      platform::errors::Unimplemented(
                          "Too many parameter number. Only <= %d is supported.",
                          std::numeric_limits<int>::max()));

1354 1355
    auto acc_steps = ctx.Attr<int>("acc_steps");
    PADDLE_ENFORCE_GE(
1356 1357
        acc_steps,
        1,
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        platform::errors::InvalidArgument(
            "The gradient accumulation steps should be not less than 1."));
    if (acc_steps > 1) {
      auto *step_t = ctx.Output<framework::Tensor>("AccStep");
      PADDLE_ENFORCE_NOT_NULL(
          step_t,
          platform::errors::InvalidArgument(
              "Output(AccStep) cannot be nullptr when Attr(acc_steps) > 1."));
      bool is_initialized = step_t->IsInitialized();
      int64_t *step_ptr;
      if (is_initialized) {
        step_ptr = step_t->mutable_data<int64_t>(platform::CPUPlace());
        ++(*step_ptr);
      } else {
        step_t->Resize({1});
        step_ptr = step_t->mutable_data<int64_t>(platform::CPUPlace());
        *step_ptr = 1;
      }
      int64_t rounded_step = (*step_ptr) % acc_steps;

      float *fp32_acc_grad = nullptr;
      if (has_fp32_param) {
        auto *fp32_acc_grad_t =
            ctx.Output<framework::Tensor>("FP32AccFusedGrad");
        PADDLE_ENFORCE_NOT_NULL(
1383 1384 1385 1386
            fp32_acc_grad_t,
            platform::errors::InvalidArgument(
                "Output(FP32AccFusedGrad) cannot be nullptr "
                "when Attr(acc_steps) > 1."));
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
        if (!fp32_acc_grad_t->IsInitialized()) {
          fp32_acc_grad_t->Resize({static_cast<int64_t>(fp32_numel)});
          fp32_acc_grad = fp32_acc_grad_t->mutable_data<float>(place);
        } else {
          fp32_acc_grad = fp32_acc_grad_t->data<float>();
        }
      }

      platform::float16 *fp16_acc_grad = nullptr;
      float *master_acc_grad = nullptr;
1397
      bool use_master_acc_grad = false;
1398
      if (has_fp16_param) {
1399
        use_master_acc_grad = ctx.Attr<bool>("use_master_acc_grad");
1400 1401 1402
        auto *fp16_acc_grad_t =
            ctx.Output<framework::Tensor>("FP16AccFusedGrad");
        PADDLE_ENFORCE_NOT_NULL(
1403 1404 1405 1406
            fp16_acc_grad_t,
            platform::errors::InvalidArgument(
                "Output(FP16AccFusedGrad) cannot be nullptr "
                "when Attr(acc_steps) > 1."));
1407
        if (!fp16_acc_grad_t->IsInitialized()) {
1408 1409 1410
          auto acc_grad_size =
              use_master_acc_grad ? (3 * fp16_numel) : fp16_numel;
          fp16_acc_grad_t->Resize({static_cast<int64_t>(acc_grad_size)});
1411 1412 1413 1414 1415
          fp16_acc_grad =
              fp16_acc_grad_t->mutable_data<platform::float16>(place);
        } else {
          fp16_acc_grad = fp16_acc_grad_t->data<platform::float16>();
        }
1416 1417 1418 1419
        if (use_master_acc_grad) {
          master_acc_grad =
              reinterpret_cast<float *>(fp16_acc_grad + fp16_numel);
        }
1420 1421 1422 1423 1424
      }

      // Inplace addto
      if (has_fp32_param) {
        if (rounded_step == 1) {
1425 1426 1427 1428 1429 1430
          memory::Copy(place,
                       fp32_acc_grad,
                       place,
                       fp32_grad,
                       fp32_numel * sizeof(float),
                       stream);
1431
        } else {
1432 1433 1434 1435 1436 1437
          LaunchElementwiseAddWithCastKernel(dev_ctx,
                                             fp32_grad,
                                             fp32_acc_grad,
                                             fp32_acc_grad,
                                             fp32_numel,
                                             stream);
1438 1439 1440 1441
        }
      }

      if (has_fp16_param) {
1442 1443
        if (acc_steps == 2 || !use_master_acc_grad) {
          if (rounded_step != 1) {
1444 1445 1446 1447 1448 1449
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_acc_grad,
                                               fp16_grad,
                                               fp16_acc_grad,
                                               fp16_numel,
                                               stream);
1450
          } else {
1451 1452 1453 1454 1455 1456
            memory::Copy(place,
                         fp16_acc_grad,
                         place,
                         fp16_grad,
                         fp16_numel * sizeof(platform::float16),
                         stream);
1457 1458 1459
          }
        } else {  // acc_steps >= 3
          if (rounded_step == 0) {
1460 1461 1462 1463 1464 1465
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_grad,
                                               master_acc_grad,
                                               fp16_acc_grad,
                                               fp16_numel,
                                               stream);
1466
          } else if (rounded_step == 1) {
1467 1468 1469 1470 1471 1472
            memory::Copy(place,
                         fp16_acc_grad,
                         place,
                         fp16_grad,
                         fp16_numel * sizeof(platform::float16),
                         stream);
1473
          } else if (rounded_step == 2) {
1474 1475 1476 1477 1478 1479
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_grad,
                                               fp16_acc_grad,
                                               master_acc_grad,
                                               fp16_numel,
                                               stream);
1480
          } else {
1481 1482 1483 1484 1485 1486
            LaunchElementwiseAddWithCastKernel(dev_ctx,
                                               fp16_grad,
                                               master_acc_grad,
                                               master_acc_grad,
                                               fp16_numel,
                                               stream);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
          }
        }
      }

      auto *stop_update_t = ctx.Output<framework::Tensor>("StopUpdate");
      stop_update_t->Resize({1});
      auto *stop_update =
          stop_update_t->mutable_data<bool>(platform::CPUPlace());

      auto *found_inf_cpu =
          found_inf_t->mutable_data<bool>(platform::CPUPlace());

      if (rounded_step != 0) {
        *stop_update = true;
        auto *found_inf_cpu =
            found_inf_t->mutable_data<bool>(platform::CPUPlace());
        *found_inf_cpu = false;
        return;
      } else {
        // swap pointer
        fp32_grad = fp32_acc_grad;
        fp16_grad = fp16_acc_grad;
        *stop_update = false;
        found_inf_t->clear();
      }
    }

1514
    // Step 3: Get ParamInfo
1515 1516 1517 1518
    const auto *param_info_tensor = GetInputTensorPtr<int>(ctx, "ParamInfo");
    auto fp32_local_start_idx = param_info_tensor[0];
    auto fp32_local_param_num = param_info_tensor[1];
    auto fp32_global_param_num = param_info_tensor[2];
1519 1520 1521 1522 1523
    auto fp32_weight_decay_end_idx = param_info_tensor[3];
    auto fp16_local_start_idx = param_info_tensor[4];
    auto fp16_local_param_num = param_info_tensor[5];
    auto fp16_global_param_num = param_info_tensor[6];
    auto fp16_weight_decay_end_idx = param_info_tensor[7];
1524 1525 1526

    auto local_param_num = fp32_local_param_num + fp16_local_param_num;
    auto param_num = fp32_global_param_num + fp16_global_param_num;
1527 1528
    PADDLE_ENFORCE_LE(local_param_num,
                      param_num,
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
                      platform::errors::InvalidArgument(
                          "The local parameter number should not exceed the "
                          "global parameter number."));
    VLOG(1) << "local_param_num = " << local_param_num
            << " , global_param_num = " << param_num
            << " , fp32_local_start_idx = " << fp32_local_start_idx
            << " , fp32_local_param_num = " << fp32_local_param_num
            << " , fp32_global_param_num = " << fp32_global_param_num
            << " , fp16_local_start_idx = " << fp16_local_start_idx
            << " , fp16_local_param_num = " << fp16_local_param_num
            << " , fp16_global_param_num = " << fp16_global_param_num;

    // Step 4: Get LearningRate, Moment1, Moment2, Beta1Pow, Beta2Pow,
1542
    // GlobalScale
1543 1544 1545
    const auto *global_scale = GetInputTensorPtr<float>(ctx, "GlobalScale");
    const auto *lr = GetInputTensorPtr<float>(ctx, "LearningRate");
    int64_t partial_numel = 0;
1546 1547
    auto *moment1 = GetSameInOutTensorPtr<float>(
        ctx, place, "Moment1", "Moment1Out", &partial_numel);
1548

1549 1550
    PADDLE_ENFORCE_EQ(numel % partial_numel,
                      0,
1551 1552 1553
                      platform::errors::InvalidArgument(
                          "The total parameter number %d should be divided "
                          "exactly by the element number %d of Moment1.",
1554 1555
                          numel,
                          partial_numel));
1556

1557 1558 1559
    // The num_devices means the number of devices that shard a complete set
    // of all parameters. It may be num_devices < nranks or num_devices ==
    // nranks.
1560 1561 1562 1563
    int64_t num_devices = numel / partial_numel;
    VLOG(1) << "num_devices = " << num_devices
            << " , partial_numel = " << partial_numel;

1564 1565
    PADDLE_ENFORCE_EQ(fp32_numel % num_devices,
                      0,
1566 1567 1568
                      platform::errors::InvalidArgument(
                          "The fp32 parameter number %d should be divided "
                          "exactly by the device number %d.",
1569 1570 1571 1572
                          fp32_numel,
                          num_devices));
    PADDLE_ENFORCE_EQ(fp16_numel % num_devices,
                      0,
1573 1574 1575
                      platform::errors::InvalidArgument(
                          "The fp16 parameter number %d should be divided "
                          "exactly by the device number %d.",
1576 1577
                          fp16_numel,
                          num_devices));
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

    auto *moment2 =
        GetSameInOutTensorPtr<float>(ctx, place, "Moment2", "Moment2Out");
    auto *beta1pow =
        GetSameInOutTensorPtr<float>(ctx, place, "Beta1Pow", "Beta1PowOut");
    auto *beta2pow =
        GetSameInOutTensorPtr<float>(ctx, place, "Beta2Pow", "Beta2PowOut");

    auto *found_inf = found_inf_t->mutable_data<bool>(place);

1588 1589
    // Step 5: Get attributes weight_decay, beta1, beta2, epsilon,
    // max_grad_norm, ring_id,
1590
    // use_master_param_norm, is_grad_scaled_by_nranks
1591
    auto weight_decay = ctx.Attr<float>("weight_decay");
1592 1593 1594 1595 1596
    auto beta1 = ctx.Attr<float>("beta1");
    auto beta2 = ctx.Attr<float>("beta2");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto max_global_grad_norm = ctx.Attr<float>("max_global_grad_norm");
    auto clip_after_allreduce = ctx.Attr<bool>("clip_after_allreduce");
1597
    auto nranks = ctx.Attr<int64_t>("nranks");
1598 1599
    PADDLE_ENFORCE_GE(nranks,
                      num_devices,
1600 1601 1602
                      phi::errors::InvalidArgument(
                          "The nranks must be not less than num_devices."));
    PADDLE_ENFORCE_EQ(
1603 1604
        nranks % num_devices,
        0,
1605 1606 1607 1608 1609
        phi::errors::InvalidArgument(
            "The nranks must be exactly divided by num_devices."));
    bool local_shard = (nranks > num_devices);

    const auto &ring_ids = ctx.Attr<std::vector<int>>("ring_id");
1610 1611 1612 1613 1614
    auto use_master_param_norm = ctx.Attr<bool>("use_master_param_norm");
    auto is_grad_scaled_by_nranks = ctx.Attr<bool>("is_grad_scaled_by_nranks");
    VLOG(10) << "max_global_grad_norm = " << max_global_grad_norm
             << " , clip_after_allreduce = " << clip_after_allreduce
             << " , use_master_param_norm = " << use_master_param_norm
1615 1616
             << " , is_grad_scaled_by_nranks = " << is_grad_scaled_by_nranks
             << " , local_shard = " << local_shard;
1617 1618

    // Step 6: allreduce + global norm gradient clip
1619
    int64_t global_rank = 0, local_rank = 0;
S
sneaxiy 已提交
1620
    ncclComm_t global_comm = nullptr, local_comm = nullptr;
1621
    if (nranks > 1) {
1622
      auto *nccl_comm_handle =
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
          platform::NCCLCommContext::Instance().Get(ring_ids[0], place);
      global_comm = nccl_comm_handle->comm();
      global_rank = nccl_comm_handle->rank();

      if (local_shard) {
        auto *local_nccl_comm_handle =
            platform::NCCLCommContext::Instance().Get(ring_ids[1], place);
        local_comm = local_nccl_comm_handle->comm();
        local_rank = local_nccl_comm_handle->rank();
      } else {
        local_comm = global_comm;
        local_rank = global_rank;
      }
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
    }

    memory::Buffer grad_norm_square_buffer(place);
    auto *fp32_square_grad_norm = grad_norm_square_buffer.Alloc<float>(2);
    memory::Buffer cub_tmp_buffer(place);

    memory::Buffer sum_grad_buffer(place);
    float *fp32_sum_grad;
    platform::float16 *fp16_sum_grad;
    auto fp32_numel_each_device = fp32_numel / num_devices;
    auto fp16_numel_each_device = fp16_numel / num_devices;
1647 1648 1649 1650 1651 1652 1653 1654 1655
    if (local_shard) {
      auto ptr = sum_grad_buffer.Alloc<uint8_t>(
          fp32_numel * sizeof(float) + fp16_numel * sizeof(platform::float16));
      fp32_sum_grad = has_fp32_param ? reinterpret_cast<float *>(ptr) : nullptr;
      fp16_sum_grad = has_fp16_param ? reinterpret_cast<platform::float16 *>(
                                           ptr + fp32_numel * sizeof(float))
                                     : nullptr;
    } else if (nranks > 1 ||
               (max_global_grad_norm > 0 && !clip_after_allreduce)) {
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
      auto ptr = sum_grad_buffer.Alloc<uint8_t>(
          fp32_numel_each_device * sizeof(float) +
          fp16_numel_each_device * sizeof(platform::float16));
      fp32_sum_grad = has_fp32_param ? reinterpret_cast<float *>(ptr) : nullptr;
      fp16_sum_grad = has_fp16_param
                          ? reinterpret_cast<platform::float16 *>(
                                ptr + fp32_numel_each_device * sizeof(float))
                          : nullptr;
    } else {
      // NOTE: The const_cast here is not important. The fp32_sum_grad and
      // fp16_sum_grad would not be changed when num_devices == 1
      // But if I do not perform const_cast here, there would be more
      // if-else codes (num_devices > 1) when I write the following code.
      // So I prefer to use const_cast to unify the following code to reduce
      // the if-else codes.
      fp32_sum_grad = const_cast<float *>(fp32_grad);
      fp16_sum_grad = const_cast<platform::float16 *>(fp16_grad);
    }

    float rescale_grad = 1.0f;
    if (!is_grad_scaled_by_nranks) {
1677
      rescale_grad /= nranks;
1678 1679 1680 1681 1682
    }

    if (max_global_grad_norm > 0) {
      if (clip_after_allreduce) {
        // (1) ReduceScater first
1683
        if (local_shard) {
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
          NCCLAllReduceWithScale(fp32_grad,
                                 fp32_sum_grad,
                                 fp32_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx);
          NCCLAllReduceWithScale(fp16_grad,
                                 fp16_sum_grad,
                                 fp16_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx);
1698 1699 1700
          fp32_sum_grad += (local_rank * fp32_numel_each_device);
          fp16_sum_grad += (local_rank * fp16_numel_each_device);
        } else {
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
          NCCLReduceScatterWithScale(fp32_grad,
                                     fp32_sum_grad,
                                     fp32_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx);
          NCCLReduceScatterWithScale(fp16_grad,
                                     fp16_sum_grad,
                                     fp16_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx);
1715
        }
1716
        // (2) Calculate the global grad norm
1717 1718 1719 1720 1721 1722
        GetSquareGradNorm(fp32_sum_grad,
                          fp32_numel_each_device,
                          fp16_sum_grad,
                          fp16_numel_each_device,
                          fp32_square_grad_norm,
                          stream,
1723 1724 1725 1726
                          &cub_tmp_buffer);
        VLOG(1) << "Grad square norm before all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
        if (num_devices > 1) {
1727 1728 1729 1730 1731 1732 1733 1734
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::ncclAllReduce(fp32_square_grad_norm,
                                               fp32_square_grad_norm,
                                               1,
                                               ncclFloat32,
                                               ncclSum,
                                               local_comm,
                                               stream));
1735 1736 1737 1738 1739
        }
        VLOG(1) << "Grad square norm after all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
      } else {
        // (1) Calculate the local grad norm
1740 1741 1742 1743 1744 1745 1746
        GetSquareGradNorm(fp32_grad,
                          fp32_numel,
                          fp16_grad,
                          fp16_numel,
                          fp32_square_grad_norm,
                          stream,
                          &cub_tmp_buffer);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
        VLOG(1) << "Grad square norm before all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
        // (2) Calculate the gradient clip scale
        float *fp32_scale = nullptr;
        platform::float16 *fp16_scale = nullptr;
        if (has_fp32_param && has_fp16_param) {
          auto *ptr = cub_tmp_buffer.Alloc<uint8_t>(sizeof(float) +
                                                    sizeof(platform::float16));
          fp32_scale = reinterpret_cast<float *>(ptr);
          fp16_scale =
              reinterpret_cast<platform::float16 *>(ptr + sizeof(float));
        } else if (has_fp32_param) {
          fp32_scale = cub_tmp_buffer.Alloc<float>(1);
        } else {
          fp16_scale = cub_tmp_buffer.Alloc<platform::float16>(1);
        }

        float clip_scale = 1.0f;
        if (is_grad_scaled_by_nranks) {
1766
          clip_scale *= nranks;
1767
        }
1768
        CalcGradNormClipBeforeAllReduceScale<float, platform::float16>
1769 1770 1771 1772 1773
            <<<1, 1, 0, stream>>>(global_scale,
                                  max_global_grad_norm,
                                  fp32_square_grad_norm,
                                  fp32_scale,
                                  fp16_scale,
1774
                                  clip_scale);
1775 1776 1777 1778 1779
        if (fp32_scale) {
          VLOG(1) << "Grad scale: " << FlattenToString(fp32_scale, 1, place);
        } else {
          VLOG(1) << "Grad scale: " << FlattenToString(fp16_scale, 1, place);
        }
1780
        if (nranks > 1) {
1781 1782 1783 1784 1785 1786 1787 1788
          PADDLE_ENFORCE_GPU_SUCCESS(
              platform::dynload::ncclAllReduce(fp32_square_grad_norm,
                                               fp32_square_grad_norm,
                                               1,
                                               ncclFloat32,
                                               ncclSum,
                                               global_comm,
                                               stream));
1789 1790
        }
        // (3) Do ReduceScatter with scale
1791
        if (local_shard) {
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
          NCCLAllReduceWithScale(fp32_grad,
                                 fp32_sum_grad,
                                 fp32_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx,
                                 fp32_scale);
          NCCLAllReduceWithScale(fp16_grad,
                                 fp16_sum_grad,
                                 fp16_numel,
                                 nranks,
                                 global_comm,
                                 stream,
                                 dev_ctx,
                                 fp16_scale);
1808 1809 1810
          fp32_sum_grad += (local_rank * fp32_numel_each_device);
          fp16_sum_grad += (local_rank * fp16_numel_each_device);
        } else {
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
          NCCLReduceScatterWithScale(fp32_grad,
                                     fp32_sum_grad,
                                     fp32_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx,
                                     fp32_scale);
          NCCLReduceScatterWithScale(fp16_grad,
                                     fp16_sum_grad,
                                     fp16_numel_each_device,
                                     nranks,
                                     global_comm,
                                     stream,
                                     dev_ctx,
                                     fp16_scale);
1827
        }
1828 1829 1830 1831 1832
        // (4) mark max_global_grad_norm as 0, meaning that clip has been
        // already performed
        max_global_grad_norm = 0;
      }
    } else {
1833
      if (local_shard) {
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        NCCLAllReduceWithScale(fp32_grad,
                               fp32_sum_grad,
                               fp32_numel,
                               nranks,
                               global_comm,
                               stream,
                               dev_ctx);
        NCCLAllReduceWithScale(fp16_grad,
                               fp16_sum_grad,
                               fp16_numel,
                               nranks,
                               global_comm,
                               stream,
                               dev_ctx);
1848 1849 1850
        fp32_sum_grad += (local_rank * fp32_numel_each_device);
        fp16_sum_grad += (local_rank * fp16_numel_each_device);
      } else {
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
        NCCLReduceScatterWithScale(fp32_grad,
                                   fp32_sum_grad,
                                   fp32_numel_each_device,
                                   num_devices,
                                   global_comm,
                                   stream,
                                   dev_ctx);
        NCCLReduceScatterWithScale(fp16_grad,
                                   fp16_sum_grad,
                                   fp16_numel_each_device,
                                   num_devices,
                                   global_comm,
                                   stream,
                                   dev_ctx);
1865
      }
1866 1867 1868 1869 1870 1871
      CheckHasNanInfGrad(fp32_sum_grad,
                         fp32_numel_each_device,
                         fp16_sum_grad,
                         fp16_numel_each_device,
                         fp32_square_grad_norm,
                         stream,
1872 1873
                         &cub_tmp_buffer);
      if (num_devices > 1) {
1874 1875 1876 1877 1878 1879 1880 1881
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllReduce(fp32_square_grad_norm,
                                             fp32_square_grad_norm,
                                             1,
                                             ncclFloat32,
                                             ncclSum,
                                             local_comm,
                                             stream));
1882 1883 1884 1885 1886 1887
      }
      max_global_grad_norm = 0;
    }
    VLOG(10) << "ReduceScatter done";

    // Step 7: update the moment1, moment2. Calcuate the trust_ratio_div
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
    auto *fused_offsets_t = ctx.Input<framework::Tensor>("FusedParamOffsets");
    auto *fused_offsets = fused_offsets_t->data<int>();
    auto *fp32_partial_fused_offsets_t =
        ctx.Input<framework::Tensor>("FP32ShardFusedParamOffsets");
    const auto *fp32_partial_fused_offsets =
        fp32_partial_fused_offsets_t->data<int>();
    auto *fp16_partial_fused_offsets_t =
        ctx.Input<framework::Tensor>("FP16ShardFusedParamOffsets");
    const auto *fp16_partial_fused_offsets =
        fp16_partial_fused_offsets_t->data<int>();

1899 1900
    auto *step = ctx.Output<framework::Tensor>("Step")->data<int64_t>();

1901
    VLOG(1) << "FusedParamOffsets: "
1902 1903
            << FlattenToString(fused_offsets,
                               fused_offsets_t->numel(),
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
                               fused_offsets_t->place());
    VLOG(1) << "FP32ShardFusedParamOffsets: "
            << FlattenToString(fp32_partial_fused_offsets,
                               fp32_partial_fused_offsets_t->numel(),
                               fp32_partial_fused_offsets_t->place());
    VLOG(1) << "FP16ShardFusedParamOffsets: "
            << FlattenToString(fp16_partial_fused_offsets,
                               fp16_partial_fused_offsets_t->numel(),
                               fp16_partial_fused_offsets_t->place());

1914 1915
    memory::Buffer trust_ratio_div_buffer(place);
    auto *trust_ratio_div = trust_ratio_div_buffer.Alloc<float>(partial_numel);
1916 1917
    auto fp32_offset = local_rank * fp32_numel_each_device;
    auto fp16_offset = local_rank * fp16_numel_each_device;
1918 1919
    if (has_fp32_param) {
      VLOG(10) << "Update FP32 Moment and TrustRatioDiv starts";
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
      MultiTensorUpdateLambMomentAndTrustRatioDiv(dev_ctx,
                                                  fp32_partial_fused_offsets,
                                                  fp32_local_param_num,
                                                  fp32_param + fp32_offset,
                                                  fp32_sum_grad,
                                                  fp32_square_grad_norm,
                                                  global_scale,
                                                  beta1pow,
                                                  beta2pow,
                                                  moment1,
                                                  moment2,
                                                  trust_ratio_div,
                                                  found_inf,
                                                  step,
                                                  weight_decay,
                                                  fp32_weight_decay_end_idx,
                                                  beta1,
                                                  beta2,
                                                  epsilon,
                                                  max_global_grad_norm,
                                                  rescale_grad);
1941 1942 1943 1944 1945 1946
      VLOG(10) << "Update FP32 Moment and TrustRatioDiv done";
    }
    float *master_param = nullptr;
    if (has_fp16_param) {
      master_param = fp32_param + fp32_numel;
      VLOG(10) << "Update FP16 Moment and TrustRatioDiv starts";
1947
      auto tmp_found_inf = has_fp32_param ? nullptr : found_inf;
1948
      auto tmp_step = has_fp32_param ? nullptr : step;
1949
      MultiTensorUpdateLambMomentAndTrustRatioDiv(
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
          dev_ctx,
          fp16_partial_fused_offsets,
          fp16_local_param_num,
          master_param + fp16_offset,
          fp16_sum_grad,
          fp32_square_grad_norm,
          global_scale,
          beta1pow,
          beta2pow,
          moment1 + fp32_numel_each_device,
1960
          moment2 + fp32_numel_each_device,
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
          trust_ratio_div + fp32_numel_each_device,
          tmp_found_inf,
          tmp_step,
          weight_decay,
          fp16_weight_decay_end_idx,
          beta1,
          beta2,
          epsilon,
          max_global_grad_norm,
          rescale_grad);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
      VLOG(10) << "Update FP16 Moment and TrustRatioDiv done";
    }

    VLOG(10) << "Update Moment and TrustRatioDiv done hehahaha";

    // Step 8: calculate L2-Norm square of parameter and trust_ratio_div
    memory::Buffer square_norm_buffer(place);
    auto *param_square_norm = square_norm_buffer.Alloc<float>(2 * param_num);
    auto *trust_ratio_div_square_norm = param_square_norm + param_num;
    if (num_devices > 1) {
      if (use_master_param_norm) {
        FillZeroWithPtr(param_square_norm + fp32_global_param_num,
1983 1984
                        2 * param_num - fp32_global_param_num,
                        stream);
1985 1986 1987 1988
      } else {
        FillZeroWithPtr(trust_ratio_div_square_norm, param_num, stream);
      }
    }
1989 1990 1991 1992 1993 1994
    MultiTensorL2Norm(place,
                      stream,
                      fp32_param,
                      fused_offsets,
                      fp32_global_param_num,
                      param_square_norm);
1995
    if (use_master_param_norm) {
1996 1997 1998 1999 2000
      MultiTensorL2Norm(place,
                        stream,
                        master_param + fp16_offset,
                        fp16_partial_fused_offsets,
                        fp16_local_param_num,
2001
                        param_square_norm + fp16_local_start_idx);
2002
    } else {
2003 2004
      MultiTensorL2Norm(place,
                        stream,
2005 2006 2007 2008 2009
                        fp16_param + fused_offsets[fp16_local_start_idx] -
                            fused_offsets[fp32_global_param_num],
                        fused_offsets + fp16_local_start_idx,
                        fp16_local_param_num,
                        param_square_norm + fp16_local_start_idx);
2010 2011
    }

2012 2013 2014 2015 2016
    MultiTensorL2Norm(place,
                      stream,
                      trust_ratio_div,
                      fp32_partial_fused_offsets,
                      fp32_local_param_num,
2017
                      trust_ratio_div_square_norm + fp32_local_start_idx);
2018 2019 2020 2021 2022
    MultiTensorL2Norm(place,
                      stream,
                      trust_ratio_div + fp32_numel_each_device,
                      fp16_partial_fused_offsets,
                      fp16_local_param_num,
2023
                      trust_ratio_div_square_norm + fp16_local_start_idx);
2024 2025 2026 2027 2028 2029 2030 2031

    VLOG(1) << "TrustRatioDiv L2-Norm before allreduce: "
            << FlattenToString(trust_ratio_div_square_norm, param_num, place);
    if (num_devices > 1) {
      if (use_master_param_norm) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
            param_square_norm + fp32_global_param_num,
            param_square_norm + fp32_global_param_num,
2032 2033 2034 2035 2036
            2 * param_num - fp32_global_param_num,
            ncclFloat32,
            ncclSum,
            local_comm,
            stream));
2037
      } else {
2038 2039 2040 2041 2042 2043 2044 2045
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllReduce(trust_ratio_div_square_norm,
                                             trust_ratio_div_square_norm,
                                             param_num,
                                             ncclFloat32,
                                             ncclSum,
                                             local_comm,
                                             stream));
2046 2047 2048 2049
      }
      VLOG(10) << "ncclAllReduce done";
    }

2050 2051
    LogParamAndTrustRatioDivSquareNorm<1>(
        ctx, param_square_norm, trust_ratio_div_square_norm);
2052 2053 2054 2055
    VLOG(10) << "Calculate L2-Norm of Param and TrustRatioDiv done";

    // Step 9: update parameter, beta1pow, beta2pow. All gather parameters.
    if (has_fp32_param) {
2056
      MultiTensorUpdateLambParamAndBetaPows<float>(
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
          dev_ctx,
          fp32_partial_fused_offsets,
          fp32_local_param_num,
          trust_ratio_div,
          lr,
          param_square_norm + fp32_local_start_idx,
          trust_ratio_div_square_norm + fp32_local_start_idx,
          found_inf,
          fp32_param + fp32_offset,
          nullptr,
          beta1pow,
          beta2pow,
          beta1,
          beta2);
2071 2072
      if (num_devices > 1) {
        // ncclAllGather
2073 2074 2075 2076 2077 2078 2079
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllGather(fp32_param + fp32_offset,
                                             fp32_param,
                                             fp32_numel_each_device,
                                             ncclFloat32,
                                             local_comm,
                                             stream));
2080
      }
2081 2082 2083

      beta1pow = nullptr;
      beta2pow = nullptr;
2084 2085
    }
    if (has_fp16_param) {
2086
      MultiTensorUpdateLambParamAndBetaPows<platform::float16>(
2087 2088 2089 2090 2091
          dev_ctx,
          fp16_partial_fused_offsets,
          fp16_local_param_num,
          trust_ratio_div + fp32_numel_each_device,
          lr,
2092
          param_square_norm + fp16_local_start_idx,
2093 2094 2095 2096 2097 2098 2099 2100
          trust_ratio_div_square_norm + fp16_local_start_idx,
          found_inf,
          fp16_param + fp16_offset,
          master_param + fp16_offset,
          beta1pow,
          beta2pow,
          beta1,
          beta2);
2101 2102
      if (num_devices > 1) {
        // ncclAllGather
2103 2104 2105 2106 2107 2108 2109
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::ncclAllGather(fp16_param + fp16_offset,
                                             fp16_param,
                                             fp16_numel_each_device,
                                             ncclFloat16,
                                             local_comm,
                                             stream));
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
      }
    }
    VLOG(10) << "Update Param done";

    VLOG(1) << "IsFinite: " << IsFinite(dev_ctx, fp32_square_grad_norm);
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "distributed_fused_lamb op should be used with NCCL/RCCL."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
    distributed_fused_lamb,
    ops::DistributedFusedLambOpKernel<plat::CUDADeviceContext, float>);