test_pass_builder.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21
import math
import os
import sys
import tempfile
import unittest

import numpy as np
22
from simple_nets import simple_fc_net
23

24 25
import paddle.fluid as fluid
import paddle.fluid.core as core
26
from paddle.fluid import compiler
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


class TestPassBuilder(unittest.TestCase):
    def check_network_convergence(self, use_cuda, build_strategy=None):
        os.environ['CPU_NUM'] = str(4)
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = simple_fc_net()
            test_program = main.clone(for_test=True)

            opt = fluid.optimizer.SGD(learning_rate=0.001)
            opt.minimize(loss)

            batch_size = 32
            image = np.random.normal(size=(batch_size, 784)).astype('float32')
            label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)
            feed_dict = {'image': image, 'label': label}

50
            train_cp = compiler.CompiledProgram(main).with_data_parallel(
51 52
                loss_name=loss.name, build_strategy=build_strategy
            )
53
            test_cp = compiler.CompiledProgram(test_program).with_data_parallel(
54
                loss_name=loss.name,
55
                build_strategy=build_strategy,
56 57
                share_vars_from=train_cp,
            )
58 59

            for i in range(5):
60
                _ = exe.run(train_cp, fetch_list=[loss.name], feed=feed_dict)
61 62 63 64 65 66
                (test_loss,) = exe.run(
                    test_cp, fetch_list=[loss.name], feed=feed_dict
                )
                (train_loss,) = exe.run(
                    train_cp, fetch_list=[loss.name], feed=feed_dict
                )
67 68 69 70 71 72 73 74 75

                avg_test_loss_val = np.array(test_loss).mean()
                if math.isnan(float(avg_test_loss_val)):
                    sys.exit("got NaN loss, testing failed.")

                avg_train_loss_val = np.array(train_loss).mean()
                if math.isnan(float(avg_train_loss_val)):
                    sys.exit("got NaN loss, training failed.")

76 77 78 79 80 81 82 83 84 85
                np.testing.assert_allclose(
                    train_loss,
                    test_loss,
                    rtol=1e-05,
                    atol=1e-08,
                    err_msg='Train loss: '
                    + str(train_loss)
                    + '\n Test loss:'
                    + str(test_loss),
                )
86 87 88

    def test_parallel_testing_with_new_strategy(self):
        build_strategy = fluid.BuildStrategy()
X
Xin Pan 已提交
89 90
        self.assertFalse(build_strategy.fuse_elewise_add_act_ops)
        build_strategy.fuse_elewise_add_act_ops = True
91
        # FIXME: currently fuse_elewise_add_act_ops not compatible with below options
92 93
        build_strategy.enable_inplace = False
        build_strategy.memory_optimize = False
94
        pass_builder = build_strategy._finalize_strategy_and_create_passes()
95 96 97 98
        self.assertTrue(
            "fuse_elewise_add_act_pass"
            in [p.type() for p in pass_builder.all_passes()]
        )
X
Xin Pan 已提交
99

X
fix  
Xin Pan 已提交
100 101
        origin_len = len(pass_builder.all_passes())

102
        viz_pass = pass_builder.append_pass("graph_viz_pass")
X
fix  
Xin Pan 已提交
103 104
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))

105 106 107
        pass_builder.insert_pass(
            len(pass_builder.all_passes()), "graph_viz_pass"
        )
X
fix  
Xin Pan 已提交
108 109
        self.assertEqual(origin_len + 2, len(pass_builder.all_passes()))

110
        pass_builder.remove_pass(len(pass_builder.all_passes()) - 1)
X
fix  
Xin Pan 已提交
111
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))
112 113 114 115 116 117
        with tempfile.TemporaryDirectory(prefix="dot_path_") as tmpdir:
            graph_viz_path = os.path.join(tmpdir, 'test_viz_pass.dot')
            viz_pass.set("graph_viz_path", graph_viz_path)

            self.check_network_convergence(
                use_cuda=core.is_compiled_with_cuda(),
118 119
                build_strategy=build_strategy,
            )
120 121 122 123
            try:
                os.stat(graph_viz_path)
            except os.error:
                self.assertFalse(True)
124 125 126 127


if __name__ == '__main__':
    unittest.main()