test_pass_builder.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from simple_nets import simple_fc_net
16 17
import paddle.fluid as fluid
import paddle.fluid.core as core
18
from paddle.fluid import compiler
19 20 21 22 23
import numpy as np
import unittest
import os
import sys
import math
24
import tempfile
25 26 27


class TestPassBuilder(unittest.TestCase):
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def check_network_convergence(self, use_cuda, build_strategy=None):
        os.environ['CPU_NUM'] = str(4)
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = simple_fc_net()
            test_program = main.clone(for_test=True)

            opt = fluid.optimizer.SGD(learning_rate=0.001)
            opt.minimize(loss)

            batch_size = 32
            image = np.random.normal(size=(batch_size, 784)).astype('float32')
            label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)
            feed_dict = {'image': image, 'label': label}

49 50 51
            train_cp = compiler.CompiledProgram(main).with_data_parallel(
                loss_name=loss.name, build_strategy=build_strategy)
            test_cp = compiler.CompiledProgram(test_program).with_data_parallel(
52
                loss_name=loss.name,
53 54
                build_strategy=build_strategy,
                share_vars_from=train_cp)
55 56

            for i in range(5):
57 58 59 60
                _ = exe.run(train_cp, fetch_list=[loss.name], feed=feed_dict)
                test_loss, = exe.run(test_cp,
                                     fetch_list=[loss.name],
                                     feed=feed_dict)
61 62 63
                train_loss, = exe.run(train_cp,
                                      fetch_list=[loss.name],
                                      feed=feed_dict)
64 65 66 67 68 69 70 71 72

                avg_test_loss_val = np.array(test_loss).mean()
                if math.isnan(float(avg_test_loss_val)):
                    sys.exit("got NaN loss, testing failed.")

                avg_train_loss_val = np.array(train_loss).mean()
                if math.isnan(float(avg_train_loss_val)):
                    sys.exit("got NaN loss, training failed.")

73 74 75 76 77 78 79
                np.testing.assert_allclose(train_loss,
                                           test_loss,
                                           rtol=1e-05,
                                           atol=1e-08,
                                           err_msg='Train loss: ' +
                                           str(train_loss) + '\n Test loss:' +
                                           str(test_loss))
80 81 82

    def test_parallel_testing_with_new_strategy(self):
        build_strategy = fluid.BuildStrategy()
X
Xin Pan 已提交
83 84
        self.assertFalse(build_strategy.fuse_elewise_add_act_ops)
        build_strategy.fuse_elewise_add_act_ops = True
85 86 87
        #FIXME: currently fuse_elewise_add_act_ops not compatible with below options
        build_strategy.enable_inplace = False
        build_strategy.memory_optimize = False
88
        pass_builder = build_strategy._finalize_strategy_and_create_passes()
X
Xin Pan 已提交
89 90 91
        self.assertTrue("fuse_elewise_add_act_pass" in
                        [p.type() for p in pass_builder.all_passes()])

X
fix  
Xin Pan 已提交
92 93
        origin_len = len(pass_builder.all_passes())

94
        viz_pass = pass_builder.append_pass("graph_viz_pass")
X
fix  
Xin Pan 已提交
95 96
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))

97 98
        pass_builder.insert_pass(len(pass_builder.all_passes()),
                                 "graph_viz_pass")
X
fix  
Xin Pan 已提交
99 100
        self.assertEqual(origin_len + 2, len(pass_builder.all_passes()))

101
        pass_builder.remove_pass(len(pass_builder.all_passes()) - 1)
X
fix  
Xin Pan 已提交
102
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))
103 104 105 106 107 108 109 110 111 112 113
        with tempfile.TemporaryDirectory(prefix="dot_path_") as tmpdir:
            graph_viz_path = os.path.join(tmpdir, 'test_viz_pass.dot')
            viz_pass.set("graph_viz_path", graph_viz_path)

            self.check_network_convergence(
                use_cuda=core.is_compiled_with_cuda(),
                build_strategy=build_strategy)
            try:
                os.stat(graph_viz_path)
            except os.error:
                self.assertFalse(True)
114 115 116 117


if __name__ == '__main__':
    unittest.main()