test_pass_builder.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from simple_nets import simple_fc_net
16 17
import paddle.fluid as fluid
import paddle.fluid.core as core
18
from paddle.fluid import compiler
19 20 21 22 23
import numpy as np
import unittest
import os
import sys
import math
24
import tempfile
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


class TestPassBuilder(unittest.TestCase):
    def check_network_convergence(self, use_cuda, build_strategy=None):
        os.environ['CPU_NUM'] = str(4)
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = simple_fc_net()
            test_program = main.clone(for_test=True)

            opt = fluid.optimizer.SGD(learning_rate=0.001)
            opt.minimize(loss)

            batch_size = 32
            image = np.random.normal(size=(batch_size, 784)).astype('float32')
            label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)
            feed_dict = {'image': image, 'label': label}

48
            train_cp = compiler.CompiledProgram(main).with_data_parallel(
49 50
                loss_name=loss.name, build_strategy=build_strategy
            )
51
            test_cp = compiler.CompiledProgram(test_program).with_data_parallel(
52
                loss_name=loss.name,
53
                build_strategy=build_strategy,
54 55
                share_vars_from=train_cp,
            )
56 57

            for i in range(5):
58
                _ = exe.run(train_cp, fetch_list=[loss.name], feed=feed_dict)
59 60 61 62 63 64
                (test_loss,) = exe.run(
                    test_cp, fetch_list=[loss.name], feed=feed_dict
                )
                (train_loss,) = exe.run(
                    train_cp, fetch_list=[loss.name], feed=feed_dict
                )
65 66 67 68 69 70 71 72 73

                avg_test_loss_val = np.array(test_loss).mean()
                if math.isnan(float(avg_test_loss_val)):
                    sys.exit("got NaN loss, testing failed.")

                avg_train_loss_val = np.array(train_loss).mean()
                if math.isnan(float(avg_train_loss_val)):
                    sys.exit("got NaN loss, training failed.")

74 75 76 77 78 79 80 81 82 83
                np.testing.assert_allclose(
                    train_loss,
                    test_loss,
                    rtol=1e-05,
                    atol=1e-08,
                    err_msg='Train loss: '
                    + str(train_loss)
                    + '\n Test loss:'
                    + str(test_loss),
                )
84 85 86

    def test_parallel_testing_with_new_strategy(self):
        build_strategy = fluid.BuildStrategy()
X
Xin Pan 已提交
87 88
        self.assertFalse(build_strategy.fuse_elewise_add_act_ops)
        build_strategy.fuse_elewise_add_act_ops = True
89
        # FIXME: currently fuse_elewise_add_act_ops not compatible with below options
90 91
        build_strategy.enable_inplace = False
        build_strategy.memory_optimize = False
92
        pass_builder = build_strategy._finalize_strategy_and_create_passes()
93 94 95 96
        self.assertTrue(
            "fuse_elewise_add_act_pass"
            in [p.type() for p in pass_builder.all_passes()]
        )
X
Xin Pan 已提交
97

X
fix  
Xin Pan 已提交
98 99
        origin_len = len(pass_builder.all_passes())

100
        viz_pass = pass_builder.append_pass("graph_viz_pass")
X
fix  
Xin Pan 已提交
101 102
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))

103 104 105
        pass_builder.insert_pass(
            len(pass_builder.all_passes()), "graph_viz_pass"
        )
X
fix  
Xin Pan 已提交
106 107
        self.assertEqual(origin_len + 2, len(pass_builder.all_passes()))

108
        pass_builder.remove_pass(len(pass_builder.all_passes()) - 1)
X
fix  
Xin Pan 已提交
109
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))
110 111 112 113 114 115
        with tempfile.TemporaryDirectory(prefix="dot_path_") as tmpdir:
            graph_viz_path = os.path.join(tmpdir, 'test_viz_pass.dot')
            viz_pass.set("graph_viz_path", graph_viz_path)

            self.check_network_convergence(
                use_cuda=core.is_compiled_with_cuda(),
116 117
                build_strategy=build_strategy,
            )
118 119 120 121
            try:
                os.stat(graph_viz_path)
            except os.error:
                self.assertFalse(True)
122 123 124 125


if __name__ == '__main__':
    unittest.main()