distributed_fused_lamb.py 17.2 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16

W
wuhuachaocoding 已提交
17
import paddle
18
from paddle.fluid import core, framework, unique_name
19
from paddle.fluid.clip import ClipGradByGlobalNorm
20 21
from paddle.fluid.executor import global_scope
from paddle.fluid.framework import Variable, name_scope
22
from paddle.fluid.layer_helper import LayerHelper
23
from paddle.fluid.optimizer import Optimizer
24 25


26 27 28 29 30 31 32 33
def init_communicator(block, rank, ranks, ring_id):
    eps = os.environ['PADDLE_TRAINER_ENDPOINTS']
    eps = [ep.strip() for ep in eps.split(",") if ep.strip()]
    cur_ep = eps[rank]
    other_eps = [eps[r] for r in ranks if r != rank]

    local_rank = ranks.index(rank)
    comm_var_name = unique_name.generate('comm_id')
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    comm_id_var = block.create_var(
        name=comm_var_name, persistable=True, type=core.VarDesc.VarType.RAW
    )
    block.append_op(
        type='c_gen_nccl_id',
        inputs={},
        outputs={'Out': comm_id_var},
        attrs={
            'rank': local_rank,
            'endpoint': cur_ep,
            'other_endpoints': other_eps,
            'ring_id': ring_id,
        },
    )
    block.append_op(
        type='c_comm_init',
        inputs={'X': comm_id_var},
        outputs={},
        attrs={'nranks': len(ranks), 'rank': local_rank, 'ring_id': ring_id},
    )
54
    tmp_var = block.create_var(name=unique_name.generate('tmp'))
55 56 57 58 59 60 61 62 63 64 65 66 67 68
    block.append_op(
        type='fill_constant', outputs={'Out': tmp_var}, attrs={'value': 1}
    )
    block.append_op(
        type='c_allreduce_sum',
        inputs={'X': tmp_var},
        outputs={'Out': tmp_var},
        attrs={'ring_id': ring_id, 'use_calc_stream': True},
    )
    block.append_op(
        type='c_sync_calc_stream',
        inputs={'X': tmp_var},
        outputs={'Out': tmp_var},
    )
69 70 71 72 73
    return ring_id


def broadcast_parameters(block, parameters, ring_id):
    for p in parameters:
74 75 76 77 78 79
        block.append_op(
            type='c_broadcast',
            inputs={'X': p},
            outputs={'Out': p},
            attrs={'ring_id': ring_id, 'use_calc_stream': True},
        )
80 81


82
class DistributedFusedLamb(Optimizer):
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameters=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        clip_after_allreduce=True,
        is_grad_scaled_by_nranks=True,
        alignment=128,
        use_master_param_norm=True,
        gradient_accumulation_steps=1,
        use_master_acc_grad=True,
        nproc_per_node=None,
        use_hierarchical_allreduce=False,
        name=None,
    ):
        assert (
            not framework._non_static_mode()
105
        ), "DistributedFusedLamb does not support dygraph mode"
106
        super().__init__(learning_rate=learning_rate, grad_clip=None, name=name)
107 108 109 110

        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
111 112 113
        self._weight_decay = (
            lamb_weight_decay if lamb_weight_decay is not None else 0.0
        )
114 115 116 117 118 119 120 121 122 123 124 125 126 127
        if grad_clip is not None:
            assert isinstance(
                grad_clip, ClipGradByGlobalNorm
            ), "Only ClipGradByGlobalNorm is supported in DistributedFusedLamb"
            max_global_grad_norm = grad_clip.clip_norm
        else:
            max_global_grad_norm = -1.0
        self._max_global_grad_norm = max_global_grad_norm
        self._alignment = alignment if alignment is not None else -1
        self._clip_after_allreduce = clip_after_allreduce
        self._is_grad_scaled_by_nranks = is_grad_scaled_by_nranks
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
        self._scale = None
        self._use_master_param_norm = use_master_param_norm
128
        self._gradient_accumulation_steps = gradient_accumulation_steps
129
        self._use_master_acc_grad = use_master_acc_grad
130
        self._nproc_per_node = nproc_per_node
131
        self._use_hierarchical_allreduce = use_hierarchical_allreduce
132 133
        assert self._gradient_accumulation_steps >= 1

134 135 136 137 138 139 140
        self.helper = LayerHelper('distributed_fused_lamb')
        self._supports_check_nan_inf = True  # very import flag for AMP

        main_block = self.helper.main_program.global_block()
        self._found_inf = main_block.create_var(
            name=unique_name.generate('found_inf'),
            shape=[1],
141 142
            dtype=core.VarDesc.VarType.BOOL,
        )
143
        self._step = None
144

145 146 147 148
        if self._gradient_accumulation_steps > 1:
            self._stop_update = main_block.create_var(
                name=unique_name.generate('stop_update'),
                shape=[1],
149 150
                dtype=core.VarDesc.VarType.BOOL,
            )
151 152 153
        else:
            self._stop_update = None

154 155
        self._param_to_master_param = {}

156 157 158
    def _get_stop_update_var(self):
        return self._stop_update if self._stop_update is not None else False

159 160 161 162 163 164 165 166
    def _set_step(self, step):
        self._step = step

    def _get_or_create_step(self):
        if self._step is None:
            self._step = self._create_persistable_var('step', dtype='int64')
        return self._step

167 168 169 170 171 172 173 174
    def _set_scale(self, scale):
        assert scale is not None
        if not isinstance(scale, Variable):
            scale = self._create_scale_from_constant(scale)
        self._scale = scale

    def _create_scale_from_constant(self, value):
        name = unique_name.generate('global_scale')
175
        return paddle.static.create_global_var(
176 177 178 179 180 181
            name=name,
            shape=[1],
            dtype='float32',
            value=float(value),
            persistable=True,
        )
182 183 184 185 186 187 188 189 190 191

    def _get_or_create_scale(self):
        if self._scale is None:
            self._scale = self._create_scale_from_constant(1.0)
        return self._scale

    def _create_persistable_var(self, name=None, shape=[-1], dtype='float32'):
        startup_block = self.helper.startup_program.global_block()
        if name is not None:
            name = unique_name.generate(name)
192 193 194 195 196 197 198
        startup_var = startup_block.create_var(
            name=name,
            shape=shape,
            dtype=dtype,
            persistable=True,
            stop_gradient=True,
        )
199
        main_block = self.helper.main_program.global_block()
200 201 202 203 204 205 206
        main_var = main_block.create_var(
            name=startup_var.name,
            shape=startup_var.shape,
            dtype=startup_var.dtype,
            persistable=True,
            stop_gradient=True,
        )
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        return main_var

    def _get_parameter(self, name, scope=None):
        if scope is None:
            scope = global_scope()

        master_param = self._param_to_master_param.get(name)
        assert master_param is not None

        master_param_t = scope.find_var(master_param).get_tensor()
        assert master_param_t._dtype() == core.VarDesc.VarType.FP32

        param_t = scope.find_var(name).get_tensor()
        if param_t._dtype() == core.VarDesc.VarType.FP32:
            assert param_t._ptr() == master_param_t._ptr()
            return param_t, None
        else:
            assert param_t._dtype() == core.VarDesc.VarType.FP16
            assert param_t.shape() == master_param_t.shape()
            return param_t, master_param_t

    def apply_optimize(self, params_grads):
        self.apply_gradients(params_grads)

    def apply_gradients(self, params_grads):
        flattened = []
        for p, g in params_grads:
            flattened.extend([p, g])
        with flattened[0].block.program._optimized_guard(flattened), name_scope(
236 237
            "optimizer"
        ):
238 239 240 241
            self._apply_gradients_impl(params_grads)

    def _apply_gradients_impl(self, params_grads):
        for p, g in params_grads:
242 243 244
            assert (
                g.type == core.VarDesc.VarType.LOD_TENSOR
            ), "Only support dense gradient"
245 246 247 248
            g.persistable = True  # the gradient must be persistable for fusion

        fp32_fused_param = self._create_persistable_var('fp32_fused_param')
        fp32_fused_grad = self._create_persistable_var('fp32_fused_grad')
249 250 251 252 253 254
        fp16_fused_param = self._create_persistable_var(
            'fp16_fused_param', dtype='float16'
        )
        fp16_fused_grad = self._create_persistable_var(
            'fp16_fused_grad', dtype='float16'
        )
255 256 257 258 259 260 261 262 263 264 265 266 267

        master_params = []
        for p, g in params_grads:
            master_p = self._create_persistable_var('master_weight')
            self._param_to_master_param[p.name] = master_p.name
            master_params.append(master_p)

        moment1 = self._create_persistable_var('moment1')
        moment1.is_distributed = True
        moment2 = self._create_persistable_var('moment2')
        moment2.is_distributed = True
        beta1pow = self._create_persistable_var('beta1pow')
        beta2pow = self._create_persistable_var('beta2pow')
268

269 270 271
        param_info = self._create_persistable_var('param_info', dtype='int32')
        param_info.is_distributed = True

272 273 274
        fused_offsets = self._create_persistable_var(
            'fused_offsets', dtype='int32'
        )
275 276

        fp32_partial_fused_offsets = self._create_persistable_var(
277 278
            'fp32_partial_fused_offsets', dtype='int32'
        )
279
        fp32_partial_fused_offsets.is_distributed = True
280

281
        fp16_partial_fused_offsets = self._create_persistable_var(
282 283
            'fp16_partial_fused_offsets', dtype='int32'
        )
284 285
        fp16_partial_fused_offsets.is_distributed = True

286 287 288
        param_order = self._create_persistable_var('param_order', dtype='int32')
        param_order.is_distributed = True

289 290 291 292 293
        if self._gradient_accumulation_steps > 1:
            fp32_acc_fused_grad = [
                self._create_persistable_var('fp32_acc_fused_grad')
            ]
            fp16_acc_fused_grad = [
294 295 296
                self._create_persistable_var(
                    'fp16_acc_fused_grad', dtype='float16'
                )
297 298 299 300 301 302 303
            ]
            acc_step = [self._create_persistable_var('acc_step', dtype='int64')]
        else:
            fp32_acc_fused_grad = []
            fp16_acc_fused_grad = []
            acc_step = []

304 305
        step = self._get_or_create_step()

W
wuhuachaocoding 已提交
306 307
        rank = paddle.distributed.get_rank()
        nranks = paddle.distributed.get_world_size()
308 309 310 311
        if self._nproc_per_node is None:
            nproc_per_node = nranks
        else:
            nproc_per_node = self._nproc_per_node
312 313 314
        assert (
            nranks % nproc_per_node == 0
        ), "nranks should be exactly divided by nproc_per_node"
315

316
        shard_inside_node = nranks > nproc_per_node
317 318 319 320 321 322
        local_rank = rank % nproc_per_node
        node_id = int(rank / nproc_per_node)
        node_num = int(nranks / nproc_per_node)
        ring_ids = []
        startup_block = self.helper.startup_program.global_block()
        if nranks > 1:
323 324 325
            ring_id = init_communicator(
                startup_block, rank, list(range(nranks)), 0
            )
326 327
            ring_ids.append(ring_id)

328
        use_hierarchical_allreduce = False
329 330
        if node_num > 1 and len(ring_ids) <= 1 and shard_inside_node:
            local_group_ranks = list(
331 332 333 334 335
                range(node_id * nproc_per_node, (node_id + 1) * nproc_per_node)
            )
            ring_id = init_communicator(
                startup_block, rank, local_group_ranks, 1
            )
336 337
            ring_ids.append(ring_id)

338 339 340
            if self._use_hierarchical_allreduce and nranks > nproc_per_node:
                use_hierarchical_allreduce = True
                outer_group_ranks = list(
341 342 343 344 345
                    range(rank % nproc_per_node, nranks, nproc_per_node)
                )
                ring_id = init_communicator(
                    startup_block, rank, outer_group_ranks, ring_ids[-1] + 1
                )
346 347
                ring_ids.append(ring_id)

348 349 350 351
        scale = self._get_or_create_scale()

        params = [p for p, _ in params_grads]
        grads = [g for _, g in params_grads]
352
        apply_weight_decay = [1] * len(params)
353 354 355
        if self._exclude_from_weight_decay_fn is not None:
            for i, p in enumerate(params):
                if self._exclude_from_weight_decay_fn(p):
356
                    apply_weight_decay[i] = 0
357 358

        for g in grads:
359 360 361 362 363 364 365
            startup_block.create_var(
                name=g.name,
                type=g.type,
                dtype=g.dtype,
                persistable=g.persistable,
                shape=g.shape,
            )
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        if nranks > 1:
            broadcast_parameters(startup_block, params, ring_ids[0])

        startup_block.append_op(
            type='distributed_fused_lamb_init',
            inputs={
                'Param': params,
                'Grad': grads,
            },
            outputs={
                'FP32FusedParam': [fp32_fused_param],
                'FP32FusedGrad': [fp32_fused_grad],
                'FP16FusedParam': [fp16_fused_param],
                'FP16FusedGrad': [fp16_fused_grad],
                'Moment1': [moment1],
                'Moment2': [moment2],
                'Beta1Pow': [beta1pow],
                'Beta2Pow': [beta2pow],
                'GlobalScale': [scale],
                'ParamInfo': [param_info],
                'ParamOut': params,
                'MasterParamOut': master_params,
                'GradOut': grads,
                'FP32ShardFusedParamOffsets': [fp32_partial_fused_offsets],
                'FP16ShardFusedParamOffsets': [fp16_partial_fused_offsets],
                'FusedParamOffsets': [fused_offsets],
                'ParamOrder': [param_order],
                'Step': [step],
            },
            attrs={
                'alignment': self._alignment,
                'rank': local_rank if shard_inside_node else rank,
                'nranks': nproc_per_node if shard_inside_node else nranks,
                'apply_weight_decay': apply_weight_decay,
                'moment1': 0.0,
                'moment2': 0.0,
                'beta1': self._beta1,
                'beta2': self._beta2,
405 406
            },
        )
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

        main_block = self.helper.main_program.global_block()
        self._create_global_learning_rate()
        lr = None
        for p_g in params_grads:
            if lr is None:
                lr = self._create_param_lr(p_g)
            else:
                new_lr = self._create_param_lr(p_g)
                assert id(lr) == id(
                    new_lr
                ), "The learning rate for each parameter should be the same"
        assert lr is not None

        lamb_op = main_block.append_op(
            type='distributed_fused_lamb',
            inputs={
                'FP32FusedParam': [fp32_fused_param],
                'FP32FusedGrad': [fp32_fused_grad],
                'FP16FusedParam': [fp16_fused_param],
                'FP16FusedGrad': [fp16_fused_grad],
                'LearningRate': [lr],
                'Moment1': [moment1],
                'Moment2': [moment2],
                'Beta1Pow': [beta1pow],
                'Beta2Pow': [beta2pow],
                'GlobalScale': [scale],
                'ParamInfo': [param_info],
                'Param': params,
                'Grad': grads,
                'FusedParamOffsets': [fused_offsets],
                'FP32ShardFusedParamOffsets': [fp32_partial_fused_offsets],
                'FP16ShardFusedParamOffsets': [fp16_partial_fused_offsets],
440
                'ParamOrder': [param_order],
441 442 443 444 445 446 447 448
            },
            outputs={
                'FP32FusedParamOut': [fp32_fused_param],
                'FP16FusedParamOut': [fp16_fused_param],
                'Moment1Out': [moment1],
                'Moment2Out': [moment2],
                'Beta1PowOut': [beta1pow],
                'Beta2PowOut': [beta2pow],
449 450
                'ParamOut': params,
                'GradOut': grads,
451
                'FoundInf': [self._found_inf],
452 453 454 455 456 457
                'FP32AccFusedGrad': fp32_acc_fused_grad,
                'FP16AccFusedGrad': fp16_acc_fused_grad,
                'AccStep': acc_step,
                'StopUpdate': self._stop_update
                if self._stop_update is not None
                else [],
458
                'Step': [step],
459 460
            },
            attrs={
461
                'weight_decay': self._weight_decay,
462 463 464 465 466 467
                'beta1': self._beta1,
                'beta2': self._beta2,
                'epsilon': self._epsilon,
                'max_global_grad_norm': self._max_global_grad_norm,
                'clip_after_allreduce': self._clip_after_allreduce,
                'rank': rank,
468 469
                'nranks': nranks,
                'ring_id': ring_ids,
470 471
                'use_master_param_norm': self._use_master_param_norm,
                'is_grad_scaled_by_nranks': self._is_grad_scaled_by_nranks,
472
                'acc_steps': self._gradient_accumulation_steps,
473
                'use_master_acc_grad': self._use_master_acc_grad,
474
                'use_hierarchical_allreduce': use_hierarchical_allreduce,
475 476
            },
        )
477
        return [lamb_op]