distributed_fused_lamb.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import framework, core, layers, unique_name
from paddle.fluid.framework import Variable
from paddle.fluid.clip import ClipGradByGlobalNorm
from paddle.fluid.initializer import Constant
from paddle.fluid.layer_helper import LayerHelper
from paddle.optimizer import Optimizer
from paddle.distributed import get_rank, get_world_size
from paddle.fluid.executor import global_scope
from paddle.fluid.framework import name_scope
import numpy as np


class DistributedFusedLamb(Optimizer):
    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
                 parameters=None,
                 grad_clip=None,
                 exclude_from_weight_decay_fn=None,
                 clip_after_allreduce=True,
                 is_grad_scaled_by_nranks=True,
                 alignment=128,
                 use_master_param_norm=True,
                 name=None):
        assert not framework.in_dygraph_mode(
        ), "DistributedFusedLamb does not support dygraph mode"
        super(DistributedFusedLamb, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=None,
            grad_clip=None,
            name=name)

        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._weight_decay = lamb_weight_decay if lamb_weight_decay is not None else 0.0
        if grad_clip is not None:
            assert isinstance(
                grad_clip, ClipGradByGlobalNorm
            ), "Only ClipGradByGlobalNorm is supported in DistributedFusedLamb"
            max_global_grad_norm = grad_clip.clip_norm
        else:
            max_global_grad_norm = -1.0
        self._max_global_grad_norm = max_global_grad_norm
        self._alignment = alignment if alignment is not None else -1
        self._clip_after_allreduce = clip_after_allreduce
        self._is_grad_scaled_by_nranks = is_grad_scaled_by_nranks
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
        self._scale = None
        self._ring_id = 0
        self._use_master_param_norm = use_master_param_norm
        self.helper = LayerHelper('distributed_fused_lamb')
        self._supports_check_nan_inf = True  # very import flag for AMP

        main_block = self.helper.main_program.global_block()
        self._found_inf = main_block.create_var(
            name=unique_name.generate('found_inf'),
            shape=[1],
            dtype=core.VarDesc.VarType.BOOL)

        self._param_to_master_param = {}

    def _set_scale(self, scale):
        assert scale is not None
        if not isinstance(scale, Variable):
            scale = self._create_scale_from_constant(scale)
        self._scale = scale

    def _create_scale_from_constant(self, value):
        name = unique_name.generate('global_scale')
        return layers.create_global_var(
            name=name,
            shape=[1],
            dtype='float32',
            value=float(value),
            persistable=True)

    def _get_or_create_scale(self):
        if self._scale is None:
            self._scale = self._create_scale_from_constant(1.0)
        return self._scale

    def _create_persistable_var(self, name=None, shape=[-1], dtype='float32'):
        startup_block = self.helper.startup_program.global_block()
        if name is not None:
            name = unique_name.generate(name)
        startup_var = startup_block.create_var(
            name=name,
            shape=shape,
            dtype=dtype,
            persistable=True,
            stop_gradient=True)
        main_block = self.helper.main_program.global_block()
        main_var = main_block.create_var(
            name=startup_var.name,
            shape=startup_var.shape,
            dtype=startup_var.dtype,
            persistable=True,
            stop_gradient=True)
        return main_var

    def _get_parameter(self, name, scope=None):
        if scope is None:
            scope = global_scope()

        master_param = self._param_to_master_param.get(name)
        assert master_param is not None

        master_param_t = scope.find_var(master_param).get_tensor()
        assert master_param_t._dtype() == core.VarDesc.VarType.FP32

        param_t = scope.find_var(name).get_tensor()
        if param_t._dtype() == core.VarDesc.VarType.FP32:
            assert param_t._ptr() == master_param_t._ptr()
            return param_t, None
        else:
            assert param_t._dtype() == core.VarDesc.VarType.FP16
            assert param_t.shape() == master_param_t.shape()
            return param_t, master_param_t

    def apply_optimize(self, params_grads):
        self.apply_gradients(params_grads)

    def apply_gradients(self, params_grads):
        flattened = []
        for p, g in params_grads:
            flattened.extend([p, g])
        with flattened[0].block.program._optimized_guard(flattened), name_scope(
                "optimizer"):
            self._apply_gradients_impl(params_grads)

    def _apply_gradients_impl(self, params_grads):
        for p, g in params_grads:
            assert g.type == core.VarDesc.VarType.LOD_TENSOR, "Only support dense gradient"
            g.persistable = True  # the gradient must be persistable for fusion

        fp32_fused_param = self._create_persistable_var('fp32_fused_param')
        fp32_fused_grad = self._create_persistable_var('fp32_fused_grad')
        fp16_fused_param = self._create_persistable_var(
            'fp16_fused_param', dtype='float16')
        fp16_fused_grad = self._create_persistable_var(
            'fp16_fused_grad', dtype='float16')

        master_params = []
        for p, g in params_grads:
            master_p = self._create_persistable_var('master_weight')
            self._param_to_master_param[p.name] = master_p.name
            master_params.append(master_p)

        moment1 = self._create_persistable_var('moment1')
        moment1.is_distributed = True
        moment2 = self._create_persistable_var('moment2')
        moment2.is_distributed = True
        beta1pow = self._create_persistable_var('beta1pow')
        beta2pow = self._create_persistable_var('beta2pow')
        fused_indices = self._create_persistable_var(
            'fused_indices', dtype='int32')
        weight_decay = self._create_persistable_var('weight_decay')
        weight_decay.is_distributed = True
        param_info = self._create_persistable_var('param_info', dtype='int32')
        param_info.is_distributed = True

181 182
        fused_offsets = self._create_persistable_var(
            'fused_offsets', dtype='int32')
183 184 185 186

        fp32_partial_fused_offsets = self._create_persistable_var(
            'fp32_partial_fused_offsets', dtype='int32')
        fp32_partial_fused_offsets.is_distributed = True
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        fp16_partial_fused_offsets = self._create_persistable_var(
            'fp16_partial_fused_offsets', dtype='int32')
        fp16_partial_fused_offsets.is_distributed = True

        rank = get_rank()
        nranks = get_world_size()
        scale = self._get_or_create_scale()

        params = [p for p, _ in params_grads]
        grads = [g for _, g in params_grads]
        weight_decay_values = [self._weight_decay] * len(params)
        if self._exclude_from_weight_decay_fn is not None:
            for i, p in enumerate(params):
                if self._exclude_from_weight_decay_fn(p):
                    weight_decay_values[i] = 0.0

        startup_block = self.helper.startup_program.global_block()
        for g in grads:
            startup_block.create_var(
                name=g.name,
                type=g.type,
                dtype=g.dtype,
                persistable=g.persistable,
                shape=g.shape)

        startup_block.append_op(
            type='distributed_fused_lamb_init',
            inputs={
                'Param': params,
                'Grad': grads,
            },
            outputs={
                'FP32FusedParam': [fp32_fused_param],
                'FP32FusedGrad': [fp32_fused_grad],
                'FP16FusedParam': [fp16_fused_param],
                'FP16FusedGrad': [fp16_fused_grad],
                'Moment1': [moment1],
                'Moment2': [moment2],
                'Beta1Pow': [beta1pow],
                'Beta2Pow': [beta2pow],
                'FusedIndices': [fused_indices],
                'WeightDecay': [weight_decay],
                'GlobalScale': [scale],
                'ParamInfo': [param_info],
                'ParamOut': params,
                'MasterParamOut': master_params,
                'GradOut': grads,
                'FP32ShardFusedParamOffsets': [fp32_partial_fused_offsets],
                'FP16ShardFusedParamOffsets': [fp16_partial_fused_offsets],
                'FusedParamOffsets': [fused_offsets],
            },
            attrs={
                'alignment': self._alignment,
                'rank': rank,
                'nranks': nranks,
                'weight_decay': weight_decay_values,
                'moment1': 0.0,
                'moment2': 0.0,
                'beta1': self._beta1,
                'beta2': self._beta2,
            })

        main_block = self.helper.main_program.global_block()
        self._create_global_learning_rate()
        lr = None
        for p_g in params_grads:
            if lr is None:
                lr = self._create_param_lr(p_g)
            else:
                new_lr = self._create_param_lr(p_g)
                assert id(lr) == id(
                    new_lr
                ), "The learning rate for each parameter should be the same"
        assert lr is not None

        lamb_op = main_block.append_op(
            type='distributed_fused_lamb',
            inputs={
                'FP32FusedParam': [fp32_fused_param],
                'FP32FusedGrad': [fp32_fused_grad],
                'FP16FusedParam': [fp16_fused_param],
                'FP16FusedGrad': [fp16_fused_grad],
                'LearningRate': [lr],
                'Moment1': [moment1],
                'Moment2': [moment2],
                'Beta1Pow': [beta1pow],
                'Beta2Pow': [beta2pow],
                'FusedIndices': [fused_indices],
                'WeightDecay': [weight_decay],
                'GlobalScale': [scale],
                'ParamInfo': [param_info],
                'Param': params,
                'Grad': grads,
                'FusedParamOffsets': [fused_offsets],
                'FP32ShardFusedParamOffsets': [fp32_partial_fused_offsets],
                'FP16ShardFusedParamOffsets': [fp16_partial_fused_offsets],
            },
            outputs={
                'FP32FusedParamOut': [fp32_fused_param],
                'FP16FusedParamOut': [fp16_fused_param],
                'Moment1Out': [moment1],
                'Moment2Out': [moment2],
                'Beta1PowOut': [beta1pow],
                'Beta2PowOut': [beta2pow],
                'ParamOut': params,
                'GradOut': grads,
                'FoundInf': [self._found_inf],
            },
            attrs={
                'beta1': self._beta1,
                'beta2': self._beta2,
                'epsilon': self._epsilon,
                'max_global_grad_norm': self._max_global_grad_norm,
                'clip_after_allreduce': self._clip_after_allreduce,
                'rank': rank,
                'ring_id': self._ring_id,
                'use_master_param_norm': self._use_master_param_norm,
                'is_grad_scaled_by_nranks': self._is_grad_scaled_by_nranks,
            })
        return [lamb_op]