distributed_fused_lamb.py 17.8 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16 17 18 19 20
from paddle.fluid import framework, core, layers, unique_name
from paddle.fluid.framework import Variable
from paddle.fluid.clip import ClipGradByGlobalNorm
from paddle.fluid.initializer import Constant
from paddle.fluid.layer_helper import LayerHelper
21
from paddle.fluid.optimizer import Optimizer
22
from paddle.distributed import get_rank, get_world_size
23
from paddle.distributed.collective import new_group
24 25
from paddle.fluid.executor import global_scope
from paddle.fluid.framework import name_scope
26
from paddle.fluid import core, unique_name
27 28 29
import numpy as np


30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def init_communicator(block, rank, ranks, ring_id):
    eps = os.environ['PADDLE_TRAINER_ENDPOINTS']
    eps = [ep.strip() for ep in eps.split(",") if ep.strip()]
    cur_ep = eps[rank]
    other_eps = [eps[r] for r in ranks if r != rank]

    local_rank = ranks.index(rank)
    comm_var_name = unique_name.generate('comm_id')
    comm_id_var = block.create_var(name=comm_var_name,
                                   persistable=True,
                                   type=core.VarDesc.VarType.RAW)
    block.append_op(type='c_gen_nccl_id',
                    inputs={},
                    outputs={'Out': comm_id_var},
                    attrs={
                        'rank': local_rank,
                        'endpoint': cur_ep,
                        'other_endpoints': other_eps,
                        'ring_id': ring_id
                    })
    block.append_op(type='c_comm_init',
                    inputs={'X': comm_id_var},
                    outputs={},
                    attrs={
                        'nranks': len(ranks),
                        'rank': local_rank,
                        'ring_id': ring_id
                    })
    tmp_var = block.create_var(name=unique_name.generate('tmp'))
    block.append_op(type='fill_constant',
                    outputs={'Out': tmp_var},
                    attrs={'value': 1})
    block.append_op(type='c_allreduce_sum',
                    inputs={'X': tmp_var},
                    outputs={'Out': tmp_var},
                    attrs={
                        'ring_id': ring_id,
                        'use_calc_stream': True
                    })
    block.append_op(type='c_sync_calc_stream',
                    inputs={'X': tmp_var},
                    outputs={'Out': tmp_var})
    return ring_id


def broadcast_parameters(block, parameters, ring_id):
    for p in parameters:
        block.append_op(type='c_broadcast',
                        inputs={'X': p},
                        outputs={'Out': p},
                        attrs={
                            'ring_id': ring_id,
                            'use_calc_stream': True
                        })


86
class DistributedFusedLamb(Optimizer):
87

88 89 90 91 92 93 94 95 96 97 98 99 100
    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
                 parameters=None,
                 grad_clip=None,
                 exclude_from_weight_decay_fn=None,
                 clip_after_allreduce=True,
                 is_grad_scaled_by_nranks=True,
                 alignment=128,
                 use_master_param_norm=True,
101
                 gradient_accumulation_steps=1,
102
                 use_master_acc_grad=True,
103
                 nproc_per_node=None,
104
                 name=None):
J
Jiabin Yang 已提交
105
        assert not framework._non_static_mode(
106
        ), "DistributedFusedLamb does not support dygraph mode"
107 108 109
        super(DistributedFusedLamb, self).__init__(learning_rate=learning_rate,
                                                   grad_clip=None,
                                                   name=name)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._weight_decay = lamb_weight_decay if lamb_weight_decay is not None else 0.0
        if grad_clip is not None:
            assert isinstance(
                grad_clip, ClipGradByGlobalNorm
            ), "Only ClipGradByGlobalNorm is supported in DistributedFusedLamb"
            max_global_grad_norm = grad_clip.clip_norm
        else:
            max_global_grad_norm = -1.0
        self._max_global_grad_norm = max_global_grad_norm
        self._alignment = alignment if alignment is not None else -1
        self._clip_after_allreduce = clip_after_allreduce
        self._is_grad_scaled_by_nranks = is_grad_scaled_by_nranks
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
        self._scale = None
        self._use_master_param_norm = use_master_param_norm
129
        self._gradient_accumulation_steps = gradient_accumulation_steps
130
        self._use_master_acc_grad = use_master_acc_grad
131
        self._nproc_per_node = nproc_per_node
132 133
        assert self._gradient_accumulation_steps >= 1

134 135 136 137 138 139 140 141
        self.helper = LayerHelper('distributed_fused_lamb')
        self._supports_check_nan_inf = True  # very import flag for AMP

        main_block = self.helper.main_program.global_block()
        self._found_inf = main_block.create_var(
            name=unique_name.generate('found_inf'),
            shape=[1],
            dtype=core.VarDesc.VarType.BOOL)
142
        self._step = None
143

144 145 146 147 148 149 150 151
        if self._gradient_accumulation_steps > 1:
            self._stop_update = main_block.create_var(
                name=unique_name.generate('stop_update'),
                shape=[1],
                dtype=core.VarDesc.VarType.BOOL)
        else:
            self._stop_update = None

152 153
        self._param_to_master_param = {}

154 155 156
    def _get_stop_update_var(self):
        return self._stop_update if self._stop_update is not None else False

157 158 159 160 161 162 163 164
    def _set_step(self, step):
        self._step = step

    def _get_or_create_step(self):
        if self._step is None:
            self._step = self._create_persistable_var('step', dtype='int64')
        return self._step

165 166 167 168 169 170 171 172
    def _set_scale(self, scale):
        assert scale is not None
        if not isinstance(scale, Variable):
            scale = self._create_scale_from_constant(scale)
        self._scale = scale

    def _create_scale_from_constant(self, value):
        name = unique_name.generate('global_scale')
173 174 175 176 177
        return layers.create_global_var(name=name,
                                        shape=[1],
                                        dtype='float32',
                                        value=float(value),
                                        persistable=True)
178 179 180 181 182 183 184 185 186 187

    def _get_or_create_scale(self):
        if self._scale is None:
            self._scale = self._create_scale_from_constant(1.0)
        return self._scale

    def _create_persistable_var(self, name=None, shape=[-1], dtype='float32'):
        startup_block = self.helper.startup_program.global_block()
        if name is not None:
            name = unique_name.generate(name)
188 189 190 191 192
        startup_var = startup_block.create_var(name=name,
                                               shape=shape,
                                               dtype=dtype,
                                               persistable=True,
                                               stop_gradient=True)
193
        main_block = self.helper.main_program.global_block()
194 195 196 197 198
        main_var = main_block.create_var(name=startup_var.name,
                                         shape=startup_var.shape,
                                         dtype=startup_var.dtype,
                                         persistable=True,
                                         stop_gradient=True)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        return main_var

    def _get_parameter(self, name, scope=None):
        if scope is None:
            scope = global_scope()

        master_param = self._param_to_master_param.get(name)
        assert master_param is not None

        master_param_t = scope.find_var(master_param).get_tensor()
        assert master_param_t._dtype() == core.VarDesc.VarType.FP32

        param_t = scope.find_var(name).get_tensor()
        if param_t._dtype() == core.VarDesc.VarType.FP32:
            assert param_t._ptr() == master_param_t._ptr()
            return param_t, None
        else:
            assert param_t._dtype() == core.VarDesc.VarType.FP16
            assert param_t.shape() == master_param_t.shape()
            return param_t, master_param_t

    def apply_optimize(self, params_grads):
        self.apply_gradients(params_grads)

    def apply_gradients(self, params_grads):
        flattened = []
        for p, g in params_grads:
            flattened.extend([p, g])
        with flattened[0].block.program._optimized_guard(flattened), name_scope(
                "optimizer"):
            self._apply_gradients_impl(params_grads)

    def _apply_gradients_impl(self, params_grads):
        for p, g in params_grads:
            assert g.type == core.VarDesc.VarType.LOD_TENSOR, "Only support dense gradient"
            g.persistable = True  # the gradient must be persistable for fusion

        fp32_fused_param = self._create_persistable_var('fp32_fused_param')
        fp32_fused_grad = self._create_persistable_var('fp32_fused_grad')
238 239 240 241
        fp16_fused_param = self._create_persistable_var('fp16_fused_param',
                                                        dtype='float16')
        fp16_fused_grad = self._create_persistable_var('fp16_fused_grad',
                                                       dtype='float16')
242 243 244 245 246 247 248 249 250 251 252 253 254

        master_params = []
        for p, g in params_grads:
            master_p = self._create_persistable_var('master_weight')
            self._param_to_master_param[p.name] = master_p.name
            master_params.append(master_p)

        moment1 = self._create_persistable_var('moment1')
        moment1.is_distributed = True
        moment2 = self._create_persistable_var('moment2')
        moment2.is_distributed = True
        beta1pow = self._create_persistable_var('beta1pow')
        beta2pow = self._create_persistable_var('beta2pow')
255

256 257 258
        param_info = self._create_persistable_var('param_info', dtype='int32')
        param_info.is_distributed = True

259 260
        fused_offsets = self._create_persistable_var('fused_offsets',
                                                     dtype='int32')
261 262 263 264

        fp32_partial_fused_offsets = self._create_persistable_var(
            'fp32_partial_fused_offsets', dtype='int32')
        fp32_partial_fused_offsets.is_distributed = True
265

266 267 268 269
        fp16_partial_fused_offsets = self._create_persistable_var(
            'fp16_partial_fused_offsets', dtype='int32')
        fp16_partial_fused_offsets.is_distributed = True

270 271 272
        param_order = self._create_persistable_var('param_order', dtype='int32')
        param_order.is_distributed = True

273 274 275 276 277
        if self._gradient_accumulation_steps > 1:
            fp32_acc_fused_grad = [
                self._create_persistable_var('fp32_acc_fused_grad')
            ]
            fp16_acc_fused_grad = [
278 279
                self._create_persistable_var('fp16_acc_fused_grad',
                                             dtype='float16')
280 281 282 283 284 285 286
            ]
            acc_step = [self._create_persistable_var('acc_step', dtype='int64')]
        else:
            fp32_acc_fused_grad = []
            fp16_acc_fused_grad = []
            acc_step = []

287 288
        step = self._get_or_create_step()

289 290
        rank = get_rank()
        nranks = get_world_size()
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        if self._nproc_per_node is None:
            nproc_per_node = nranks
        else:
            nproc_per_node = self._nproc_per_node
        assert nranks % nproc_per_node == 0, "nranks should be exactly divided by nproc_per_node"

        shard_inside_node = (nranks > nproc_per_node)
        local_rank = rank % nproc_per_node
        node_id = int(rank / nproc_per_node)
        node_num = int(nranks / nproc_per_node)
        ring_ids = []
        startup_block = self.helper.startup_program.global_block()
        if nranks > 1:
            ring_id = init_communicator(startup_block, rank,
                                        list(range(nranks)), 0)
            ring_ids.append(ring_id)

        if node_num > 1 and len(ring_ids) <= 1 and shard_inside_node:
            local_group_ranks = list(
                range(node_id * nproc_per_node, (node_id + 1) * nproc_per_node))
            ring_id = init_communicator(startup_block, rank, local_group_ranks,
                                        1)
            ring_ids.append(ring_id)

315 316 317 318
        scale = self._get_or_create_scale()

        params = [p for p, _ in params_grads]
        grads = [g for _, g in params_grads]
319
        apply_weight_decay = [1] * len(params)
320 321 322
        if self._exclude_from_weight_decay_fn is not None:
            for i, p in enumerate(params):
                if self._exclude_from_weight_decay_fn(p):
323
                    apply_weight_decay[i] = 0
324 325

        for g in grads:
326 327 328 329 330 331
            startup_block.create_var(name=g.name,
                                     type=g.type,
                                     dtype=g.dtype,
                                     persistable=g.persistable,
                                     shape=g.shape)

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
        if nranks > 1:
            broadcast_parameters(startup_block, params, ring_ids[0])

        startup_block.append_op(
            type='distributed_fused_lamb_init',
            inputs={
                'Param': params,
                'Grad': grads,
            },
            outputs={
                'FP32FusedParam': [fp32_fused_param],
                'FP32FusedGrad': [fp32_fused_grad],
                'FP16FusedParam': [fp16_fused_param],
                'FP16FusedGrad': [fp16_fused_grad],
                'Moment1': [moment1],
                'Moment2': [moment2],
                'Beta1Pow': [beta1pow],
                'Beta2Pow': [beta2pow],
                'GlobalScale': [scale],
                'ParamInfo': [param_info],
                'ParamOut': params,
                'MasterParamOut': master_params,
                'GradOut': grads,
                'FP32ShardFusedParamOffsets': [fp32_partial_fused_offsets],
                'FP16ShardFusedParamOffsets': [fp16_partial_fused_offsets],
                'FusedParamOffsets': [fused_offsets],
                'ParamOrder': [param_order],
                'Step': [step],
            },
            attrs={
                'alignment': self._alignment,
                'rank': local_rank if shard_inside_node else rank,
                'nranks': nproc_per_node if shard_inside_node else nranks,
                'apply_weight_decay': apply_weight_decay,
                'moment1': 0.0,
                'moment2': 0.0,
                'beta1': self._beta1,
                'beta2': self._beta2,
            })
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

        main_block = self.helper.main_program.global_block()
        self._create_global_learning_rate()
        lr = None
        for p_g in params_grads:
            if lr is None:
                lr = self._create_param_lr(p_g)
            else:
                new_lr = self._create_param_lr(p_g)
                assert id(lr) == id(
                    new_lr
                ), "The learning rate for each parameter should be the same"
        assert lr is not None

        lamb_op = main_block.append_op(
            type='distributed_fused_lamb',
            inputs={
                'FP32FusedParam': [fp32_fused_param],
                'FP32FusedGrad': [fp32_fused_grad],
                'FP16FusedParam': [fp16_fused_param],
                'FP16FusedGrad': [fp16_fused_grad],
                'LearningRate': [lr],
                'Moment1': [moment1],
                'Moment2': [moment2],
                'Beta1Pow': [beta1pow],
                'Beta2Pow': [beta2pow],
                'GlobalScale': [scale],
                'ParamInfo': [param_info],
                'Param': params,
                'Grad': grads,
                'FusedParamOffsets': [fused_offsets],
                'FP32ShardFusedParamOffsets': [fp32_partial_fused_offsets],
                'FP16ShardFusedParamOffsets': [fp16_partial_fused_offsets],
404
                'ParamOrder': [param_order],
405 406 407 408 409 410 411 412
            },
            outputs={
                'FP32FusedParamOut': [fp32_fused_param],
                'FP16FusedParamOut': [fp16_fused_param],
                'Moment1Out': [moment1],
                'Moment2Out': [moment2],
                'Beta1PowOut': [beta1pow],
                'Beta2PowOut': [beta2pow],
413 414 415 416
                'ParamOut':
                params,
                'GradOut':
                grads,
417
                'FoundInf': [self._found_inf],
418 419 420 421 422 423 424 425
                'FP32AccFusedGrad':
                fp32_acc_fused_grad,
                'FP16AccFusedGrad':
                fp16_acc_fused_grad,
                'AccStep':
                acc_step,
                'StopUpdate':
                self._stop_update if self._stop_update is not None else [],
426
                'Step': [step],
427 428
            },
            attrs={
429
                'weight_decay': self._weight_decay,
430 431 432 433 434 435
                'beta1': self._beta1,
                'beta2': self._beta2,
                'epsilon': self._epsilon,
                'max_global_grad_norm': self._max_global_grad_norm,
                'clip_after_allreduce': self._clip_after_allreduce,
                'rank': rank,
436 437
                'nranks': nranks,
                'ring_id': ring_ids,
438 439
                'use_master_param_norm': self._use_master_param_norm,
                'is_grad_scaled_by_nranks': self._is_grad_scaled_by_nranks,
440
                'acc_steps': self._gradient_accumulation_steps,
441
                'use_master_acc_grad': self._use_master_acc_grad,
442 443
            })
        return [lamb_op]