test_imperative_selected_rows.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18

19
import paddle
20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.optimizer import SGDOptimizer
24 25


26
class SimpleNet(paddle.nn.Layer):
Y
Youwei Song 已提交
27
    def __init__(self, vocab_size, hidden_size, dtype):
28
        super().__init__()
29 30 31 32 33
        self.emb = paddle.nn.Embedding(
            vocab_size,
            hidden_size,
            weight_attr='emb.w',
            sparse=True,
34
        )
35 36 37 38 39 40 41

    def forward(self, input):
        input_emb = self.emb(input)
        return input_emb, self.emb


class TestSimpleNet(unittest.TestCase):
42 43
    def test_selectedrows_gradient1(self):
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
44 45 46 47 48 49 50
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for dtype in ["float32", "float64"]:
                for sort_sum_gradient in [True, False]:
51
                    paddle.disable_static(place)
52
                    fluid.set_flags(
53 54
                        {'FLAGS_sort_sum_gradient': sort_sum_gradient}
                    )
55
                    # grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
56

57
                    input_word = np.array([[1, 2], [2, 1]]).astype('int64')
Z
Zhou Wei 已提交
58
                    input = paddle.to_tensor(input_word)
59

60
                    simplenet = SimpleNet(20, 32, dtype)
61 62 63 64
                    adam = SGDOptimizer(
                        learning_rate=0.001,
                        parameter_list=simplenet.parameters(),
                    )  # grad_clip=grad_clip
65
                    input_emb, emb = simplenet(input)
66

67 68
                    self.assertIsNone(emb.weight.gradient())
                    self.assertIsNone(input_emb.gradient())
69

70
                    input_emb.backward()
71
                    adam.minimize(input_emb)
72
                    self.assertIsNotNone(emb.weight.gradient())
73

74
                    emb.clear_gradients()
75
                    self.assertIsNone(emb.weight.gradient())
76

77
                    input_emb.clear_gradient()
78
                    self.assertIsNotNone(input_emb.gradient())
79
                    paddle.enable_static()
80
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
81

82 83
    def test_selectedrows_gradient2(self):
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
84 85 86 87 88 89 90
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for sort_sum_gradient in [True, False]:
                with fluid.dygraph.guard(place):
91
                    fluid.set_flags(
92 93
                        {'FLAGS_sort_sum_gradient': sort_sum_gradient}
                    )
94
                    grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
95

Y
Youwei Song 已提交
96
                    input_word = np.array([[1, 2], [2, 1]]).astype('int64')
97 98
                    input = to_variable(input_word)

Y
Youwei Song 已提交
99
                    simplenet = SimpleNet(20, 32, "float32")
100 101 102 103 104
                    adam = SGDOptimizer(
                        learning_rate=0.001,
                        parameter_list=simplenet.parameters(),
                        grad_clip=grad_clip,
                    )
105 106
                    input_emb, emb = simplenet(input)

107 108
                    self.assertIsNone(emb.weight.gradient())
                    self.assertIsNone(input_emb.gradient())
109

110
                    input_emb.backward()
111
                    adam.minimize(input_emb)
112
                    self.assertIsNotNone(emb.weight.gradient())
113 114

                    emb.clear_gradients()
115
                    self.assertIsNone(emb.weight.gradient())
116 117

                    input_emb.clear_gradient()
118
                    self.assertIsNotNone(input_emb.gradient())
119
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
120

121 122 123

if __name__ == '__main__':
    unittest.main()