test_imperative_selected_rows.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.nn import Embedding
from paddle.fluid.optimizer import SGDOptimizer
import numpy as np
import paddle.fluid.core as core
24
import paddle
25 26


27
class SimpleNet(paddle.nn.Layer):
Y
Youwei Song 已提交
28 29
    def __init__(self, vocab_size, hidden_size, dtype):
        super(SimpleNet, self).__init__()
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        self.emb = fluid.dygraph.Embedding(
            size=[vocab_size, hidden_size],
            dtype=dtype,
            param_attr='emb.w',
            is_sparse=True)

    def forward(self, input):
        input_emb = self.emb(input)
        return input_emb, self.emb


class TestSimpleNet(unittest.TestCase):
    def test_selectedrows_gradient1(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for dtype in ["float32", "float64"]:
                for sort_sum_gradient in [True, False]:
50 51 52 53
                    paddle.disable_static(place)
                    backward_strategy = paddle.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = sort_sum_gradient
                    # grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
54

55 56
                    input_word = np.array([[1, 2], [2, 1]]).astype('int64')
                    input = paddle.to_variable(input_word)
57

58 59 60 61 62 63
                    simplenet = SimpleNet(20, 32, dtype)
                    adam = SGDOptimizer(
                        learning_rate=0.001,
                        parameter_list=simplenet.parameters(
                        ))  # grad_clip=grad_clip
                    input_emb, emb = simplenet(input)
64

65 66
                    self.assertTrue(emb.weight.gradient() is None)
                    self.assertTrue(input_emb.gradient() is None)
67

68 69 70
                    input_emb.backward(backward_strategy)
                    adam.minimize(input_emb)
                    self.assertTrue(emb.weight.gradient() is not None)
71

72 73
                    emb.clear_gradients()
                    self.assertTrue(emb.weight.gradient() is None)
74

75 76 77
                    input_emb.clear_gradient()
                    self.assertTrue(input_emb.gradient() is not None)
                    paddle.enable_static()
78 79 80 81 82 83 84 85 86 87 88

    def test_selectedrows_gradient2(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for sort_sum_gradient in [True, False]:
                with fluid.dygraph.guard(place):
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = sort_sum_gradient
89
                    grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
90

Y
Youwei Song 已提交
91
                    input_word = np.array([[1, 2], [2, 1]]).astype('int64')
92 93
                    input = to_variable(input_word)

Y
Youwei Song 已提交
94
                    simplenet = SimpleNet(20, 32, "float32")
95 96
                    adam = SGDOptimizer(
                        learning_rate=0.001,
97 98
                        parameter_list=simplenet.parameters(),
                        grad_clip=grad_clip)
99 100
                    input_emb, emb = simplenet(input)

101 102
                    self.assertTrue(emb.weight.gradient() is None)
                    self.assertTrue(input_emb.gradient() is None)
103 104

                    input_emb.backward(backward_strategy)
105
                    adam.minimize(input_emb)
106
                    self.assertTrue(emb.weight.gradient() is not None)
107 108

                    emb.clear_gradients()
109
                    self.assertTrue(emb.weight.gradient() is None)
110 111

                    input_emb.clear_gradient()
112
                    self.assertTrue(input_emb.gradient() is not None)
113 114 115 116


if __name__ == '__main__':
    unittest.main()